

Daily Practice Problems

NEET PHYSICS

Topic: Wave Optics

Q.1 If a transparent medium of refractive index $\mu = 1.5$ and thickness t= 2.5×10^{-5} m is inserted in front of the slits of Young's Double slit experiment, how much will be the shift in the interference pattern ? The distance between the slits is 0.5 mm and that between slits and screen is 100 cm :

(1) 5 cm (2) 2.5 cm (3) 0.25 cm (4) 0.1 cm

Q.2 In Young's experiment, monochromatic light is used to illuminate the two slits A and B. Interference fringes are observed on a screen placed in front of the slits.

Now if a thin glass plate is placed normally in the path of the beam coming from the slit then :

- (1) The fringes will disappear
- (2) The fringe width will decrease
- (3) The fringe width will increase
- (4) There will be no change in the fringe width
- (4) There will be no change in the fringe width
- Q.3 What is the path difference of destructive interference : -

- (3) $\frac{(n+1)\lambda}{2}$ (4) $\frac{(2n+1)\lambda}{2}$
- Q.4 A double slit experiment is performed with light of wavelength 500 nm. A thin film of thickness 2 μm and refractive index 1.5 is introduced in the path of the upper beam. The location of the central maximum will :
 - (1) Remain unshifted
 - (2) Shift downward by nearly two fringes
 - (3) Shift upward by nearly two fringes
 - (4) Shift downward by 10 fringes

www.aggarwaleducare.com

- **Q.5** A monochromatic beam of light is used for the formation of fringes on the screen by illuminating the two slits in the Young's double slit interference experiment. When a thin film of mica is interposed in the path of one of the interfering beams then :
 - (1) The fringe width increases
 - (2) The fringe width decreases
 - (3) The fringe width remains the same but the pattern shifts
 - (4) The fringe pattern disappears

Q.6 When exposed to sunlight, thin films of oil on water often exhibit brilliant colors due to the phenomenon of -

- (1) interference (2) diffraction
- (3) dispersion (4) polarisation
- Q.7 The ratio of diameters of fourth and ninth half period zone is :
 - (1) 2/3 (2) 1/18
 - (3) 1/3 (4) 1/27
- **Q.8** For a zone plate, the value of $\frac{f_2}{f_1}$ is :
 - (1) $\frac{2}{5}$ (2) $\frac{5}{2}$ (3) $\frac{3}{9}$ (4) 4
- **Q.9** The area of third half period zone initiated from a source of wavelength 5000Å at point of projection one metre from the plane wave front will be :
 - (1) $15.7 \times 10^{-7} m^2$ (2) $47.1 \times 10^{-7} m^2$
 - (3) $5.1 \times 10^{-7} \text{m}^2$ (4) none of the above
- Q.10 Diffraction and interference of light refers to :
 - (1) quantum nature of light
 - (2) wave nature of light
 - (3) transverse nature of light
 - (4) electromagnetic nature of light
- **Q.11** Two Fresnel's successive half period zones are such that secondary waves originating from corresponding points and approaches towards the observation point have a :
 - (1) path difference $\lambda/2$ (2) phase difference π
 - (3) time difference T/2 (4) all of the above

www.aggarwaleducare.com

Q.12 A zone plate behave like a :

- (1) concave lens (2) convex lens
- (3) concave mirror (4) convex mirror
- **Q.13** Direction of the first secondary maximum in the Fraunhofer diffraction pattern at a single slit is given by (a is the width of the slit) :

(1) a sin
$$\theta = \frac{\lambda}{2}$$
 (2) a cos $\theta = \frac{3\lambda}{2}$

- (3) a sin $\theta = \lambda$ (4) a sin $\theta = \frac{3\lambda}{2}$
- Q.14 The phenomenon of diffraction of light was discovered by :

(1) Huygens	(2) Newton
(3) Fresnel	(4) Grimaldi

- **Q.15** Angular width (θ) of central maximum of a diffraction pattern of a single slit does not depend upon :
 - (1) Distance between slit and source
 - (2) Wavelength of light used
 - (3) Width of the slit
 - (4) Frequency of light used
- Q.16 Red light is generally used to observe diffraction pattern from single slit. If green light is used instead of red light, then diffraction pattern :
 - (1) Will be more clear (2) Will be contract
 - (3) Will be expanded (4) Will not visualize
- **Q.17** A zone plate of focal length 60 cm, behaves as a convex lens, If wavelength of incident light is 6000Å, then radius of first half period zone will be :
 - (1) 36×10^{-8} m (2) 6×10^{-8} m
 - (3) $\sqrt{6} \times 10^{-8}$ m (4) 6×10^{-4} m
- **Q.18** In diffraction radius of half period zone is proportional to :

(1) $n^{-1/2}$ (2) $n^{1/2}$ (3) n^2 (4) n

- Q.19 Polarisation of light proves the -
 - (A) corpuscular nature of light
 - (B) quantum nature of light
 - (C) transverse wave nature of light
 - (D) longitudinal wave nature of light

www.aggarwaleducare.com

- Q.20 Waves that cannot be polarised are -
 - (A) light waves
 - (B) electromagnetic waves
 - (C) transverse waves
 - (D) longitudinal waves
- **Q.21** The angle of incidence at which reflected light is totally polarised for reflection from air to glass (refractive index n) is
 - (A) $\sin^{-1}(n)$ (B) $\sin^{-1}(1/n)$
 - (C) $tan^{-1}(1/n)$ (D) $tan^{-1}(n)$
- Q.22 The polaroid glass is used in sunglasses as -
 - (A) it is a fashion
 - (B) this reduce glare
 - (C) this is cheaper than other types
 - (D) this looks more beautiful
- Q.23 In propagation of electromagnetic waves the angle between the direction of propagation and plane of polarisation is -
 - (A) 0º (B) 45º
 - (C) 90º (D) 180º
- **Q.24** A beam of light strikes a piece of glass at an angle of incidence of 60° and the reflected beam is completely plane polarised. The refractive index of the glass is -
 - (A)1.5 (B) $\sqrt{3}$
 - (C) $\sqrt{2}$ (D) (3/2)

- Q.25 The unit of luminous efficiency of an electric bulb is -
 - (1) watt (2) lumen
 - (3) lumen/watt (4) lux
- **Q.26** 5 lumen/W is the luminous efficiency of a lamp and its luminous intensity is 35 candela. The power of the lamp is -
 - (1) 80 watt (2) 176 watt
 - (3) 88 watt (4) 36 watt
- **Q.27** A source of light emits a continuous stream of light energy which fall on a given area. Luminous intensity is defined as -
 - (1) Luminous energy emitted by the source per second
 - (2) Luminous flux emitted by the source per unit solid angle
 - (3) Luminous flux falling per unit area of a given surface
 - (4) Luminous flux coming per unit area of an illuminated surface

Q.28 Candela is the unit of

- (1) Magnetic intensity
- (2) Gravitational intensity
- (3) Electric intensity
- (4) Luminous intensity
- Q.29 1 lux is equal to -
 - (1) 1 lumen/m² (2) 1 lumen / cm^2
 - (3) 1 candela / m^2 (4) 1 candela / cm^2
- Q.30 An isotorpic source of 2 candela produces flux equal to -
 - (1) 2π lumen
 - (2) 4π lumen
 - (3) 6π lumen
 - (4) 8π lumen

www.aggarwaleducare.com

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	4	4	3	3	1	1	3	1	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	2	4	4	1	2	4	2	3	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	4	2	1	2	3	3	2	4	1	4

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.