TM

The equation of tangent to the curve $y = \sin x$ at the point $(\pi, 0)$ is -Q.1

(A) x + y = 0

(B)
$$x + y = \pi$$

(C) $x - y = \pi$ (D) x - y = 0

$$(D) x - y = 0$$

Q.2 If normal to the curve y = f(x) at a point makes 135° angle with x- axis, then at that point dy/dx equals-

(A) 1

(B) -1

(C) 0

(D) ∞

The slope of the curve $y = \sin x + \cos^2 x$ is zero at the point, where-**Q.3**

(A) $x = \frac{\pi}{4}$ (B) $x = \frac{\pi}{2}$ (C) $x = \pi$

(D) No where

The equation of the tangent to the curve $y = \cos x$ at $x = \pi/3$ is-**Q.4**

(A) $3x - 2\sqrt{3}y = \pi + \sqrt{3}$

(B) $3x + 2\sqrt{3}y = \pi + \sqrt{3}$

(C) $3x + 2\sqrt{3}y = \pi - \sqrt{3}$

(D) None of these

Q.5 The equation of tangent to the curve $y = 2 \sin x + \sin 2x$ at the point $x = \pi/3$ is-

(A) 2y = 3

(B)
$$3y = \sqrt{2}$$

(C) $2y = 3\sqrt{3}$

(D) 2y = 3

Q.6 The equation of the tangent to the curve

 $y = be^{-x/a}$ at the point where it meets y- axis is

(A)
$$\frac{x}{b} + \frac{y}{a} = 1$$

(B)
$$\frac{x}{a} + \frac{y}{b} = 1$$

(C)
$$\frac{x}{b} + \frac{y}{a} = 2$$

(D)
$$\frac{x}{a} + \frac{y}{b} = 2$$

Q.7 The equation of the tangent to the curve $1/\sqrt{x} + 1/\sqrt{y} = 2/\sqrt{a}$ at point (a, a) is-

(A)
$$a/\sqrt{x} + a/\sqrt{y} = 2\sqrt{a}$$

(B)
$$x + y = 2a$$

(C)
$$\sqrt{x} + \sqrt{y} = 2\sqrt{a}$$

- (D) None of these
- **Q.8** y = x 11 is a tangent to the curve $y = x^3 11x + 5$ at the point-
 - (A) (2,-9)

(B)(3, -8)

(C) (11, 0)

- (D) None of these
- **Q.9** If tangent at a point of the curve y = f(x) is perpendicular to 2x 3y = 5, then at that point dy/dx equals-
 - (A) 2/3

(B) - 2/3

(C) 3/2

- (D) 3/2
- **Q.10** At what point the tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ is perpendicular to the x- axis-
 - (A) (O, O)

(B) (a, a)

(C) (a, 0)

- (D) (0, a)
- **Q.11** At what point of the curve $y = 2x^2 x + 1$ tangent is parallel to y = 3x + 4
 - (A) (0, 1)

(B) (1, 2)

(C) (-1, 4)

(D) (2, 7)

- Q.12 If tangent of the curve $x = t^2 - 1$, $y = t^2 - t$ is perpendicular to x- axis, then-
 - (A) t = 0

(B) $t = 1/\sqrt{2}$

(C) $t = \infty$

- (D) $t = -1/\sqrt{3}$
- The equation of tangent to the curve $y = 1 e^{x/2}$ at the point where it meets y- axis is-Q.13
 - (A) x + 2y = 0
- (B) 2x + y = 0
- (C) x y = 2
- (D) None of these
- The point where the tangent line to the curvey = e^{2x} at (0, 1) meets x- axis is-Q.14
 - (A)(1,0)

- (B)(-1,0)
- (C)(-1/2, 0)
- (D) None of these
- The point on the curve $y = x^2 3x + 2$ at which the tangent is perpendicular to the line y = x is-Q.15
 - (A)(0,2)

- (B)(1,0)
- (C) (-1, 6) (D) (2, -2)
- The equation of tangent to the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ at the point (a, b) for all values of $n \in \mathbb{N}$ is-
 - (A) $\frac{x}{a} + \frac{y}{b} = 1$
- (B) $\frac{x}{a} + \frac{y}{b} = 2$
- (C) $\frac{x}{a} + \frac{y}{b} = \frac{1}{2}$
- (D) $\frac{a}{x} + \frac{b}{y} = 2$
- The equation of tangent at the point (at², at³) on the curve $ay^2 = x^3$ is-Q.17
 - (A) $3tx 2y = at^3$
- (B) $tx 3y = at^3$
- (C) $3 tx + 2y = at^3$
- (D) None of these
- The slopes of the tangents to the curve y = (x + 1)(x 3) at the points where it crosses x- axis are-Q.18
 - $(A) \pm 2$

 $(B) \pm 3$

 $(C) \pm 4$

(D) None of these

Q.19	The coordinates of the point on the curve $y = x^2 + 3x + 4$, the tangent at which passes through the origin are-					
	(A) (-2, 2), (2, 14)					
	(B) (1, -1), (3, 4)					
	(C) (2, 14), (2, 2)					
	(D) (1, 2), (14, 3)					
Q.20	The angle made by tangent at the point $(2, 0)$ of the curve $y = (x - 2)(x - 3)$ with x- axis is-					
	(A) π/4	(B) π /2				
	(C) $\frac{3\pi}{4}$	(D) π				
Q.21	If the curve $y = x^2 + bx + c$, touches the line $y = x$ at the point (1, 1), then values of b and c are-					
	(A) -1, 2	(B) -1, 1				
	(C) 2, 1	(D) -2, 1				
Q.22	The line $x/a + y/b = 1$ touches the curve $y = be^{-x/a}$ at the point-					
	(A) (0, a)	(B) (O, O)				
	(C) (0, b)	(D) (b, 0)				
Q.23	If the tangent to the curve $f(x) = x^2$ at any point (c, $f(c)$) is parallel to line joining the points (a, $f(a)$) and (b, $f(b)$) on the curve, then a, c, b are in-					
	(A) H.P.	(B) G.P.				
	(C) A.P.	(D) A.P. and G.P. both				
Q.24	A tangent to the curve $y = x^2 + 3x$ passes through a point $(0, -9)$ if it is drawn at the point-					
	(A) (-3, 0)	(B) (1, 4)				
	(C) (0, 0)	(D) (-4, 4)				

- **Q.25** The coordinates of the points on the curve $x = a (\theta + \sin \theta)$, $y = a (1 \cos \theta)$, where tangent is inclined an angle $\pi/4$ to the x-axis are-
 - (A) (a, a)

- (B) $\left(a\left(\frac{\pi}{2}-1\right), a\right)$
- (C) $\left(a\left(\frac{\pi}{2}+1\right), a\right)$
- (D) $\left(a, a\left(\frac{\pi}{2}+1\right)\right)$
- **Q.26** If the area of the triangle included between the axes and any tangent to the curve $xy^n = a^{n+1}$ is constant, then value of n is-
 - (A) -1
- (B) 1
- (C).2
- (D) -2
- **Q.27** The angle made by the tangent to the curve $x = e^t \cos t$, $y = e^t \sin t$ at point $t = \pi/4$ with x— axis is -
 - (A) 0
- (B) $\pi/4$
- (C) $\pi/3$
- (D) $\pi/2$
- **Q.28** The points at which the tangent to the curve $y = x^3 + 5$ is perpendicular to the line x + 3y = 2 are -
 - (A) (6, 1), (-1, 4)
- (B) (6, 1), (4, -1)
- (C) (1, 6), (1, 4)
- (D) (1, 6), (-1, 4)
- Q.29 The coordinates of any point P on a curve are represented by $x = \frac{1}{2}t^2$, $y = \frac{1}{3}t^3$, where t is a parameter, then equation of tangent to the curve at P is-
 - (A) $6tx 6y = t^3$
- (B) $4tx + 3y = t^3$
- (C) $3tx + 2y = t^3$
- (D) $3tx + y = t^3$
- **Q.30** The set of points where the tangent to the curve $y^3 3xy + 2 = 0$ is horizontal is-
 - (A) {(1, 1)}

(B) {(0, 0)}

(C) {(0, 1)}

(D) ϕ

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	А	В	В	С	В	В	А	D	D
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	А	А	С	В	В	А	С	А	С
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	В	С	С	А	С	В	D	D	А	D