

Daily Practice Problems

NEET PHYSICS

Topic: Semi Conductor

- Q.1 In conductors -
 - (A) conduction band is completely empty but forbidden energy gap is small
 - (B) conduction and valence bands are overlapped
 - (C) valence band is completely filled but the conduction band is completely empty
 - (D) no energy band is present
- **Q.2** The forbidden energy gap of a germanium semiconductor is 0.75 eV. The minimum thermal energy of electrons reaching the conduction band from the valence band should be -
 - (A) 0.5 eV (B) 0.75 eV
 - (C) 0.25 eV (D) 1.5eV
- **Q.3** The energy of a photon of sodium light ($\lambda = 5890$ Å) equals the band gap of a semiconductor. The minimum energy required to create an electron-hole pair is -
 - (A) 0.026 eV (B) 0.31 eV
 - (C) 2.1eV (D) 6.4 eV
- **Q.4** The forbidden energy band gap in conductors, semiconductors and insulators are EG₁, EG₂ and EG₃ respectively. The relation among them is -
 - (A) $EG_1 = EG_2 = EG_3$ (B) $EG_1 < EG_2 < EG_3$
 - (C) $EG_1 > EG_2 > EG_3$ (D) $EG_1 < EG_2 > EG_3$
- Q.5 On increasing temperature the specific resistance of a semiconductor -
 - (A) decreases (B) increases
 - (C) remains constant (D) becomes zero

www.aggarwaleducare.com

- **Q.6** Which of the following statements is not correct ?
 - (A) Resistance of semiconductor decreases with increase in temperature
 - (B) In an electric field, displacement of holes is opposite to the displacement of electrons
 - (C) Resistance of a conductor decreases with the increase in temperature
 - (D) n-type semiconductors are neutral
- **Q.7** Wires P and Q have the same resistance at ordinary (room) temperature. When heated, resistance of P increases and that of Q decreases. We conclude that -
 - (A) P and Q are conductors of different materials
 - (B) P is N-type semiconductor and Q is P-type semiconductor
 - (C) P is semiconductor and Q is conductor
 - (D) P is conductor and Q is semiconductor
- Q.8 In a good conductor the energy gap between the conduction band and the valence band is -

(A) Infinite	(B) Wide
(C) Narrow	(D) Zero

- **Q.9** In a semiconducting material the mobilities of electrons and holes are μ_e and μ_h respectively. Which of the following is true ?
 - (A) $\mu_{e} > \mu_{h}$ (B) $\mu_{e} < \mu_{h}$
 - (C) $\mu_e = \mu_h$ (D) $\mu_e < 0; \mu_h > 0$
- **Q.10** Those materials in which number of holes in valence band is equal to number of electrons in conduction band are called
 - (A) conductors
 - (B) Intrinsic semiconductors
 - (C) p-type semiconductors
 - (D) n-type semiconductors

- Q.11 In p-type semiconductor holes move in
 - (A) forbidden region
 - (B) conduction band
 - (C) valence band
 - (D) all the above regions
- Q.12 Which of the following statement is wrong ?
 - (A) Resistance of extrinsic semiconductors can be changed as required
 - (B) In n-type semiconductor the number of electrons increases in valence band
 - (C) In p-type semiconductors the number of holes increases in valence band
 - (D) In pure semiconductor fermi band is situated in between the valence band and conduction band
- Q.13 P-type semiconductor is formed when -
 - A. As impurity is mixed in Si
 - B. A ℓ impurity is mixed in Si
 - C. B impurity is mixed in Ge
 - D. P impurity is mixed in Ge
 - (A) A and C (B) A and D
 - (C) B and C (D) B and D
- Q.14 In extrinsic semiconductors -
 - (A) The conduction band and valence band overlap
 - (B) The gap between conduction band and valence band is more than 16 eV
 - (C) The gap between conduction band and valence band is near about 1 eV
 - (D) The gap between conduction band and valence band will be 100 eV and more

- Q.15 Fermi level of energy of an intrinsic semiconductor lies -
 - (A) In the middle of forbidden gap
 - (B) Below the middle of forbidden gap
 - (C) Above the middle of forbidden gap
 - (D) Outside the forbidden gap
- Q.16 If n_e and v_d be the number of electrons and drift velocity in a semiconductor. When the temperature is increased -
 - (A) n_e increases and v_d decreases
 - (B) n_e decreases and v_d increases
 - (C) Both n_e and v_d increases
 - (D) Both n_{e} and v_{d} decreases
- **Q.17** The electron mobility in N-type germanium is 3900 cm²/v.s and its conductivity is 6.24 mho/cm, then impurity concentration will be if the effect of cotters is negligible -
 - (A) 10¹⁵ cm³ (B) 10¹³/cm³
 - (C) 10¹²/cm³ (D) 10¹⁶/cm³
- **Q.18** In semiconductor the concentrations of electrons and holes are 8×10^{18} /m³ and 5×10^{18} /m³ respectively. If the mobilities of electrons and hole are 2.3 m²/volt-sec and 0.01 m²/volt-sec respectively, then semiconductor is -
 - (A) N-type and its resistivity is 0.34 ohm-metre
 - (B) P-type and its resistivity is 0.034 ohm-metre
 - (C) N-type and its resistivity is 0.034 ohm-metre
 - (D) P-type and its resistivity is 3.40 ohm-metre

- **Q.19** A potential difference of 2V is applied between the opposite faces of a Ge crystal plate of area 1 cm² and thickness 0.5 mm. If the concentration of electrons in Ge is $2 \times 10^{19}/m^3$ and mobilities of electrons and holes are $0.36 \frac{m^2}{volt-sec}$ and $0.14 \frac{m^2}{volt-sec}$ respectively, then the current flowing through the plate will be -
 - (A) 0.25 A
 - (B) 0.45 A
 - (C) 0.56 A
 - (D) 0.64 A
- **Q.20** A potential barrier of 0.50 V exists across a P-N junction. If the depletion region is 5.0×10^{-7} m wide, the intensity of the electric field in this region is -
 - (A) 1.0 × 10⁶ V/m
 - (B) 1.0 × 10⁵ V/m
 - (C) 2.0×10^5 V/m
 - (D) 2.0×10^6 V/m
- Q.21 If no external voltage is applied across P-N junction, there would be -
 - (A) No electric field across the junction
 - (B) An electric field pointing from N-type to P-type side across the junction
 - (C) An electric field pointing from P-type to N-type side across the junction
 - (D) A temporary electric field during formation of P-N junction that would subsequently disappear
- Q.22 No bias is applied to a P-N junction, then the current -
 - (A) Is zero because the number of charge carriers flowing on both sides is same
 - (B) Is zero because the charge carriers do not move
 - (C) Is non-zero
 - (D) None of these

www.aggarwaleducare.com

- Q.23 Just before the reverse breakdown in a semiconductor diode -
 - (A) The forward current is much larger then the reverse current
 - (B) The forward current is much less then the reverse current
 - (C) The forward current is equal to the reverse current
 - (D) The reverse current is much large than the forward current
- Q.24 The main cause of avalanche breakdown is -
 - (A) collision ionisation
 - (B) high dopring
 - (C) recombination of electron and holes
 - (D) none of these
- Q.25 The main cause of Zener breakdown is -
 - (A) the base semiconductor being germanium
 - (B) production of electron-hole pair due to electric field
 - (C) low doping
 - (D) high doping
- Q.26 Which of the following statements is correct ?
 - (A) The deplection region of P-N junction diode increases with forward biasing
 - (B) The depletion region of P-N junction diode decreases with reverse biasing
 - (C) The depletion region of P-N junction diode does not change with biasing
 - (D) The deplection region of P-N junction diode decreases with forward biasing
- Q.27 When reverse bias in a junction diode is increased, the width of depletion layer -
 - (A) increase (B) decreases
 - (C) does not change (D) fluctuate

www.aggarwaleducare.com

- Q.28 A semiconductor device is connected in a series circuit with a battery and resistance. A current is found to pass through the circuit. If the polarity of the battery is reversed, the current drops almost to zero. The device may be -
 - (A) A P-type semiconductor
 - (B) An N-type semiconductor
 - (C) A PN-junction
 - (D) An intrinsic semiconductor
- Q.29 The approximate ratio of resistances in the forward and reverse bias of the PN-junction diode is -

(A) 10 ² : 1	(B) 10 ⁻² : 1
(C) 1 : 10 ⁻⁴	(D) 1 : 10 ⁴

- **Q.30** The dominant mechanisms for motion of charge carriers in forward and reverse biased silicon P-N junctions are -
 - (A) Drift in forward bias, diffusion in reversebias
 - (B) Diffusion in forward bias, drift in reverse bias
 - (C) Diffusion in both forward and reverse bias
 - (D) Drift in both forward and reverse bias

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	В	с	В	А	с	D	D	А	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	с	В	с	с	А	А	D	А	D	А
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	В	А	А	А	В	D	А	с	D	В