Daily Practice Problems

NEET BIOLOGY

Topic: Respiration in Plants

1. Number of phosphorylation reactions involved in glycolysis is
2. 4
3. 3
4. 6
5. 2
6. During the conversion of GAP to 1,3 Bis PGA, the required phosphate comes from
7. ATP
8. NADPH_{2}
9. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
10. ADP
11. Conversion of 3- PGA to 2- PGA in glycolysis is an example for
12. Phosphorylation2.
. Intramolecular shift
13. Dehydration4. Cleavage
14. Pyruvic acid enters into Krebs' cycle via
1.Phosphoenol pyruvate
15. 2- PGA
16. 3- PGA
17. Acety CoA
18. For every molecule of glucose during glycolysis the ratio between pyruvic acid liberated and net gain ATP molecules formed is
19. $1: 1$
20. $2: 1$
21. $2: 3$
22. $3: 1$
23. The connecting link reaction between glycolysis and Krebs' cycle occurs in
24. Cytosol
25. Cristae
26. Peroxisome
27. Mitochondrial matrix
28. Product of first biological oxidation in Krebs' cycle is
29. Isocitric acid
30. Oxalosuccinic acid
31. Ketoglutaric acid
32. Succinic acid
33. Enzyme catalysing the cleavage reaction in Krebs' cycle is
34. Succinic thiokinase
35. Succinic dehydrogenase
36. fumarase
37. Aconitase
38. The 5-carbon organic acid of the Krebs' cycle- a key compound in the nitrogen metabolism of the cell is
39. Fumeric acid
40. Oxaloscuccinic acid
41. citric acid
42. - Ketoglutaric acid
43. Net gain of ATP when pyruvic is respired aerobically
44. 12
45. 15
46. 20
47. 17
48. When malic acid is the respiratory substrate
49. The amount of CO_{2} released is more than O_{2} consumed
50. The amount of CO_{2} released is less than O_{2} consumed
51. The amount of CO_{2} released is equal to O_{2} consumed
52. CO_{2} is not released
53. The net gain ATP in aerobic respiration is
54. 38
55. 40
56. 36
57. 34
58. Enzymes involved in the incomplete oxidation of pyruvic acid during anaerobic respiration is
59. Isomerase and Kinase
60. Decarboxylase and Dehydrogenase
61. Decarboxylase and Kinase
62. Isomerase and dehydrogenase
63. The net gain of ATP during anaerobic respiration is
64. Zero
65. Two
66. 38
67. 48
68. One of the following undergoes reduction during alcoholic fermentation
69. Pyruvate
70. Acetaldehyde
71. Acetyl CoA
72. PEP
73. The value of R.Q If glucose is the repertory substrate
74. One
75. Two
76. Zero
77. Infinity
78. If respiratory substrate is rich in oxygen, the value of RQ is
79. One
80. <1
81. >1
82. Can't be estimated
83. RQ value will be less than one in edible products of
84. Saccharum and Oryza
85. Arachis and Ricinus
86. Beta and Ipomea
87. Manihot and Beta
88. During respiration, if CO_{2} liberated is more than the amount of O_{2} consumed, the respiratory substrate must be
89. Organic acids
90. Proteins
91. Fats
92. Carbohydrates
93. If the value of $R Q$ is 1.33 , respiratory substrate is
94. Carbohydrate
95. Triolein
96. Malic acid
97. Oxalic acid
98. If Triolein is used as a respiratory substrate, then
99. More CO_{2} is liberated and less O_{2} is absorbed
100. Amount of CO_{2} liberated and amount of O_{2} absorbed are same
101. No O_{2} is absorbed but CO_{2} is liberated
102. More O_{2} is absorbed and less CO_{2} is liberated
103. A common enzyme involved in both photosynthesis and respiration is
104. Enolase
105. Aldolase
106. Mutase
107. Aconitase
108. The inter convertable trioses involved in glycolysis are
109. 3- PGA \& 2-PGA
110. Phosphoenol pyruvic acid \& Pyruvic acid
111. Glucose-6-Phosphate \& Fructose -6- Phosphate
4.GAP \& DHAP
112. Pyruvic acid before entering into Krebs' cycle must be converted to Acetyl CoA. During the conversion of pyruvic acid to acetyl CoA, biological oxidation and decarboxylation changes must occur. The various cofactors required for the process are
(Hint : LA = Lipoic acid, CoA = Co enzymeA)
113. $\mathrm{TPP}+\mathrm{LA}+\mathrm{Mg}+\mathrm{NADP}+\mathrm{CoA}$
114. $\mathrm{TPP}+\mathrm{LA}+\mathrm{Mn}+\mathrm{NAD}+\mathrm{CoA}$
115. $\mathrm{TPP}+\mathrm{LA}+\mathrm{Mg}+\mathrm{NAD}+\mathrm{CoA}$
116. $\mathrm{TPP}+\mathrm{LA}+\mathrm{Mn}+\mathrm{NADP}+\mathrm{CoA}$
117. Following is the sequence of carboxylic acids in Krebs' cycle
i) OAA = Oxalo acetic acid
ii) Citric acid (CA)
iii) Succinic acid iv)Fumeric acid (FA)
v) Malic acid (MA) From the above list, pick out the carboxylic acids, which do not participate at all in biological oxidation
118. OAA, CA, FA
119. MA, OAA, CA
120. FA, MA, OAA
121. FA, OAA, SA
122. The last tricarboxylic acid formed during Krebs' cycle that has more than four carbons is
1.Cis-acotinitic acid
123. -Ketoglutaric acid
124. Citric acid
4.Oxalosuccinic acid
125. The substance for third biological oxidation in Krebs' cycle
126. Fumeric acid 2. Succinic acid
127. Oxalosuccinic acid 4.- Ketoglutaric acid
128. The universal hydrogen acceptor is
129. NAD
130. ATP 3. CoA
131. FMN
132. Substrate level phosphorylation occurs in
1.Glycolysis and ETS chain
133. Glycolysis and Krebs' cycle
134. Krebs' cycle and transition reaction
135. ETS and transition reaction
136. When one molecule of pyruvic acid is subjected to anaerobic oxidation there is
137. Loss of 3 molecules of ATP
138. Loss of 6 molecules of ATP
139. Gain of 2 molecules of ATP
140. Loss of 4 molecules of ATP

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	3	2	4	1	4	2	1	4	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	3	2	2	2	1	3	2	1	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	4	2	4	3	1	3	2	1	2	4

