

Daily Practice Problems

NEET PHYSICS

Topic: Radioactivity & Nuclear Physics

Radioactivity

- Q.1 Radioactivity is a -
 - (1) nuclear process (2) atomic process
 - (3) chemical process (4) physical process
- Q.2 The value of decay constant of last element of radioactive series is -
 - (1) infinite
 - (2) much less
 - (3) zero
 - (4) equal to the decay constant of first element
- Q.3 If the pressure on a radioactive material is increased three times, then the mean life of the element -
 - (1) does not change
 - (2) will become three times
 - (3) will becomes $\frac{1}{3}$ rd
 - (4) will depend on the initial pressure
- **Q.4** A radioactive material emits 20 β -particles per sec at 10°C. If the temperature is increased to 20°C then the emission rate of β -particles per sec is -
 - (1) 20 (2) 40
 - (3) 30 (4) 1

- **Q.5** What will be the effect of dissolving a radioactive material in HNO₃?
 - (1) Its radioactive properties will remain unchanged
 - (2) Its radioactive properties will change
 - (3) The state of material cannot be predicted
 - (4) None of these
- **Q.6** The particles emitted by a radioactive substance are deflected in a magnetic field. The particle may be-
 - (1) neutrons
 - (2) electrons
 - (3) protons
 - (4) hydrogen atoms
- **Q.7** What will happen when a radioactive substance with mean life 2×10^5 years is dissolved in H₂SO₂?
 - (1) it will dissociate into H⁺ and SO₂ ions
 - (2) it will be converted into SO₂ gas
 - (3) it will be converted into H₂ gas
 - (4) it will remain unchanged
- Q.8 The half life of a radioactive material is 20 days. If it is heated to 10000 K, then its half life will become
 - (1) 20 × 10000 days (2) 20/10000 days
 - (3) 9800 days (4) 20 days
- Q.9 The following is not an application of radioactive material -
 - (1) to locate cracks in welding or castings
 - (2) to find the thickness of material
 - (3) in cigarette factory
 - (4) in photography

www.aggarwaleducare.com

Q.10 SI unit of radioactivity is -

- (1) curie (2) rutherfored
- (2) rontgen (4) bacqueral
- Q.11 The graph between remaining radioactive atoms and time for a radioactive decay is -
 - (1) straight line (2) parabola
 - (3) exponential (4) ellipse
- Q.12 Number of active atoms in m gram material is :
 - $(M \rightarrow atomic weight)$
 - (1) Mm × 6.02×10^{23}
 - (2) (M/m) $\times 6.02 \times 10^{23}$
 - (3) 6.02×10^{23} /Mm
 - (4) (m/M) × 6.02×10^{23}
- **Q.13** The activity of a radioactive element (decay constant λ) becomes $\frac{1}{3}$ of initial activity A₀ in 9 years then the decay constant after 9 years will -
 - (1) λ (2) $\lambda/3$
 - (3) $\lambda/9$ (4) $2\lambda/3$
- **Q.14** A radioactive sample contains two elements P and Q. The mass of each is 10^{-3} kg. The ratio of their atomic weights is 1 : 3. Their half lives are 4s and 8s respectively. The mass of P and Q after 16s will respectively be -
 - (1) 1.25×10^{-5} kg and 2.5×10^{-4} kg
 - (2) 6.25×10^{-5} kg and 2.5×10^{-4} kg
 - (3) 6.25×10^{-5} kg and 1.25×10^{-4} kg
 - (4) 2.25×10^{-5} kg and 6.25×10^{-4} kg

Q.15 A fraction of $\frac{5}{9}$ of a radioactive substance decays in time t. What fraction of the substance would had

been active after time $\frac{t}{2}$ -

- (1) 1/2 (2) 2/3
- (3) 3/4 (4) 4/5

Nuclear Physics

Q.16 In the reaction ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$. If the binding energies of ${}_{1}^{2}H$, ${}_{1}^{3}H$ and ${}_{2}^{4}He$ are respectively a, b and c (in MeV), then the energy (in MeV) released in this reaction is-

(1) a + b + c (2) c + a - b

- (3) c a b (4) a + b + c
- **Q.17** In any fission process the ratio $\frac{\text{mass of fission products}}{\text{mass of parent nucleus}}$ is -
 - (1) Greater than 1
 - (2) Depends on the mass of the parent nucleus
 - (3) Equal to 1
 - (4) Less than 1
- Q.18 Fission of nuclei is possible because the binding energy per nucleon in them -
 - (1) Decreases with mass number at low mass numbers
 - (2) Increases with mass number at low mass number
 - (3) Decreases with mass number at high mass number
 - (4) Increases with mass number at high mass number

www.aggarwaleducare.com

- **Q.19** The binding energy of deuteron is 2.2 MeV and that of ${}_{2}^{4}$ He is 28 MeV. If two deuterons are fused to form one ${}_{2}^{4}$ He then the energy released is -
 - (1) 25.8 MeV (2) 23.6 MeV
 - (3) 19.2 MeV (4) 30.2 MeV
- **Q.20** The radius of Germanium (Ge) nuclide is measured to be twice the radius of ${}^9_4\text{Be}$. The number of nucleons in Ge are -
 - (1) 73 (2) 74
 - (3) 75 (4) 72
- Q.21 Nuclear fusion is possible -
 - (1) only between light nuclei
 - (2) only between heavy nuclei
 - (3) between both light and heavy nuclei
 - (4) only between nuclei which are stable against β -decay.
- Q.22 The dependence of binding energy per nucleon (B_N) on the mass number (A), is represented by-

- Q.23 The operation of a nuclear reactor is said to be critical, if the multiplication factor (k) has a value -
 - (1) 1 (2)1.5
 - (3) 2.1 (4) 2.5

- **Q.24** The number of β -particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an -
 - (1) isotope of parent (2) isobar of parent
 - (3) isomer of parent (4) isotone of parent

Q.25 Which one of the following is used as a moderator in nuclear reaction ?

- (1) Uranium (2) Heavy water
- (3) Cadmium (4) Plutonium

Q.26 The reaction responsible for the production of light energy from the sun will be -

- (1) fission (2) fusion
- (3) nuclear (4) none of these
- Q.27 Consider the following nuclear reaction

 $X^{200} \rightarrow A^{110} + B^{90} + Energy$

If the binding energy per nucleon for X, A and B are 7.4 MeV, 8.2 MeV and 8.2 MeV respectively, the energy released will be-

- (1) 90 MeV (2) 110 MeV
- (3) 200 MeV (4) 160 MeV
- **Q.28** In each fission of ₉₂U²³⁵ releases 200 MeV, how many fissions must occur per second to produce power of 1 kW ?
 - (1) 1.25×10^{18} (2) 3.125×10^{13}
 - (3) 3.2×10^{18} (4) 1.25×10^{13}
- Q.29 The function of heavy water in a nuclear reactor to-
 - (1) slow down the neutrons
 - (2) increase the neutrons
 - (3) stop the electrons
 - (4) none of the above

www.aggarwaleducare.com

Q.30 Which one of the following has the highest neutrons ratio ?

(1) ₉₂U²³⁵ (2) ₈O¹⁶

(3) $_{2}\text{He}^{4}$ (4) $_{26}\text{Fe}^{56}$

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	3	1	1	1	2	4	4	4	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	4	1	2	2	3	4	3	2	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	1	1	2	2	4	2	1	1