

Daily Practice Problems

JEE MATHEMATICS

Topic: Parabola

- **Q.1** The equation of the directrix of the parabola $x^2 = -8y$ is
 - (A) x = 2 (B) y =2
 - (C) y = -2 (D) x = -2
- **Q.2** The equation to the parabola whose focus is (0, -3) and directrix is y = 3 is
 - (A) $x^2 = -12y$ (B) $x^2 = 12y$
 - (C) $y^2 = 12x$ (D) $y^2 = -12x$
- **Q.3** If (0, 0) be the vertex and 3x 4y + 2 = 0 be the directrix of a parabola, then the length of its latus rectum is

(A) 4/5	(B) 2/5

- (C) 8/5 (D) 1/5
- **Q.4** If $2x + y + \lambda = 0$ is a focal chord of the parabola $y^2 = -8x$, then the value of λ is
 - (A) -4 (B) 4 (C) 2 (D) -2
- **Q.5** The focal distance of a point(x_1 , y_1) on the parabola $y^2 = 12x$ is
 - (A) $x_1 + 3$ (B) $x_1 + 6$
 - (C) $y_1 + 6$ (D) $y_1 + 3$

www.aggarwaleducare.com

Q.6 The vertex of a parabola is (a,b) and its latus rectum is I. If the axis of the parabola is along the positive direction of y-axis, then its equation is-

(A)
$$(x + a)^2 = \left(\frac{\ell}{4}\right) (2y - 2b)$$

(B) $(x - a)^2 = \left(\frac{\ell}{2}\right) (2y - 2b)$
(C) $(x + a)^2 = \left(\frac{\ell}{2}\right) (2y - 2b)$
(D) $(x - a)^2 = \left(\frac{\ell}{8}\right) (2y - 2b)$

- **Q.7** The length of latus rectum of the parabola $x^2 = -y$ is-
 - (A) 1 (B) 1/4
 - (C) 4 (D) 1/2
- **Q.8** The distance between the focus and the directrix of the parabola $x^2 = -8y$, is-
 - (A) 8 (B) 2
 - (C) 4 (D) 6
- Q.9 If focus of the parabola is (3,0) and length of latus rectum is 8, then its vertex is-
 - (A) (2, 0) (B) (1, 0)
 - (C) (0, 0) (D) (-1, 0)
- Q.10 For any parabola focus is (2,1) and directrix is 2x 3y + 1 = 0, then equation of the latus rectum is-
 - (A) 3x + 2y + 8 = 0
 - (B) 2x 3y 1 = 0
 - (C) 2x 3y + 1 = 0
 - (D) 3x 2y + 4 = 0

www.aggarwaleducare.com

- **Q.11** If (a, b) is the mid point of a chord passing through the vertex of the parabola $y^2 = 4x$, then-
 - (A) a = 2b (B) 2a = b
 - (C) $a^2 = 2b$ (D) $2a = b^2$

Q.12 The area of the triangle formed by the lines joining the vertex of the parabola $x^2 = 12y$ to the ends of its latus rectum is-

- (A) 16 sq. units (B) 12 sq. units
- (C) 18 sq. units (D) 24 sq. units
- **Q.13** Vertex of the parabola $9x^2 6x + 36y + 9 = 0$ is-
 - (A) (1/3, -2/9)
 (B) (-1/3, 1/2)
 (C) (-1/3, -1/2)
 (D) (1/3, 1/2)
- **Q.14** The equation of the latus rectum of the parabola $x^2 + 4x + 2y = 0$ is-
 - (A) 3y = 2 (B) 2y + 3 = 0
 - (C) 2y = 3 (D) 3y + 2 = 0
- **Q.15** The focus of the parabola $y^2 x 2y + 2 = 0$ is-
 - (A) (1,2) (B) (1/4,0)
 - (C) (3/4, 1) (D) (5/4, 1)
- **Q.16** Vertex of the parabola $y^2 + 2y + x = 0$ lies in the quadrant
 - (A) Second (B) First
 - (C) Third (D) Fourth

- **Q.17** The equation of the axis of the parabola $x^2 4x 3y + 10 = 0$ is
 - (A) y + 2 = 0 (B) x + 2 = 0
 - (C) x 2 = 0 (D) y 2 = 0
- **Q.18** The vertex of the parabola $x^2 + 4x + 2y 7 = 0$ is-
 - (A) (- 2, 2) (B) (2, 11)
 - (C) (- 2, 11) (D) (- 2, 11/2)
- Q.19 The latus rectum of the parabola
 - $y^2 4y 2x 8 = 0$ is-
 - (A) 3 (B) 2
 - (C) 1 (D) 4
- **Q.20** The point of intersection of the latus rectum and axes of the parabola $y^2 + 4x + 2y 8 = 0$ is
 - (A) (5/4, -1) (B) (7/5, 5/2)
 - (C) (9/4, -1) (D) None of these
- **Q.21** The length of the latus rectum of the parabola $x = ay^2 + by + c$ is-

(A)
$$\frac{a}{4}$$
 (B) $\frac{a}{3}$
(C) $\frac{1}{a}$ (D) $\frac{1}{4a}$

- Q.22 Which of the following is not the equation of parabola
 - (A) $4x^2 + 9y^2 12xy + x + 1 = 0$ (B) $4x^2 - 12xy + 9y^2 + 3x + 5 = 0$ (C) $2x^2 + y^2 - 4xy = 8$ (D) $4x^2 + 9y^2 - 12xy + x + 1 = 0$

www.aggarwaleducare.com

Q.23 Which one is the equation of the parabola

(A)
$$(x - y)^2 = 2$$
 (B) $\frac{x}{y} + \frac{24}{x} = 0$

(C)
$$\frac{x}{y} - \frac{y}{x} = 0$$
 (D) $2x^2 + 5y^2 = 7$

Q.24 The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a parabola, if-

- (A) a = b= 1, h = 0 (B) a = b, h = 0
- (C) $h^2 = ab$ (D) None of these

Q.25 Given the ends of latus rectum, the number of parabolas that can be drawn is-

(A) 0 (B) 1 (C) 2 (D) 3

Q.26 If (0, a) be the vertex and (0, 0) be the focus of a parabola then its equation will be

(A) $y^2 = 4a(a + x)$	(B) $x^2 = 4a(a - y)$			
(C) $x^2 = 4a(a + y)$	(D) $y^2 = 4a(a - x)$			

- **Q.27** If vertex and focus of a parabola are on x- axis and at distances p and q respectively from the origin, then its equation is-
 - (A) $y^2 = -4(p-q)(x+p)$
 - (B) $y^2 = 4(p-q)(x-p)$
 - (C) $y^2 = -4(p-q)(x-p)$
 - (D) None of these
- Q.28 Find the equation of the parabola having the vertex at (0,1) and the focus at (0,0)

(A) $x^2 + 4y - 4 = 0$	(B) $x^2 + 4y + 4 = 0$
(C) $x^2 - 4y + 4 = 0$	(D) $x^2 - 4y - 4 = 0$

www.aggarwaleducare.com

Q.29 If (2, 0) and (5, 0), are the vertex and focus of a parabola respectively then its equation is

(A)
$$y^2 = -12x - 24$$

(B) $y^2 = 12x - 24$
(C) $y^2 = 12x + 24$
(D) $y^2 = -12x + 24$

Q.30 $x-2 = t^2$, y = 2t are the parametric equations of the parabola-

- (A) $y^2 = -4x$ (B) $y^2 = 4x$ (C) $x^2 = -4y$ (D) $y^2 = 4(x-2)$

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	в	А	с	В	А	В	A	с	В	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	с	A	с	D	D	с	D	В	А
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	с	с	В	с	с	В	с	A	В	D