

NEET-1 Time: 3 Hours Max. Marks: 720 M

PHYSICS

1. A charged particle of mass m and charge q is released from rest in a uniform electric field E.

The kinetic energy of the particle after time t is

2)
$$\frac{E^2t^2m}{2t^2}$$
 3) $\frac{E^2q^2t^2}{2m}$ 4) $\frac{Eqm}{2t}$

$$3) \frac{E^2q^2t^2}{2m}$$

4)
$$\frac{Eqm}{2t}$$

2. A Parallel plate capacitor with vaccum b/w its plates has capacitance C. A slab of dielectric constant K and having the same thickness as the separation b/w the plates is introduced. So as to fill 1/3 rd of the capacitor as shown in the figure. The new capacitance will be

- 1) $(K+2)\frac{C}{4}$
- 2) $(K+2)\frac{C}{3}$
- 3) $(K+3)\frac{C}{4}$
- 4) $(K+3)\frac{C}{3}$
- Equivalent resistance b/w the points A and B $(in \Omega)$ **3.**

- 1) 1/5

- An $\angle AOB$ made of a conducting wire moves along its bisector through a magnetic field B as 4. suggested by figure. Find the emf induced between the two free ends if the magnetic field is perpendicular to the plane of the paper.

- 1) $B\ell \sin(\theta/2)$
- 2) $Bv \sin(\theta/2)$ 3) $2B\ell v \sin(\theta/2)$ 4) $B\ell v \sin(\theta/4)$

_	T 41: 1	41	D 1 C 7017	1 1017	4! I Tl
•	In the circuit given here	THE HOINTS A	Kandtare/IIV	zero and IIIV	rechectively inen
J.	In the circuit given here,	the points 1x	, D and C are 10 to		respectively. Then

1) The	point D	will be	at a pote	ential of 60	V

- 2) The point D will be at a potential of 20V
- 3) Currents in the paths AD,DB and DC are in the ratio 1:2:3
- 4) Currents in the paths AD, DB and DC are in the ratio 3:2:1

6.	In an ammeter 0.2 % of main current passes through the galvanometer. If resistance of
	galvanometer is G, the resistance of ammeter will be

1)
$$\frac{499}{500}G$$

2)
$$\frac{1}{500}G$$

3)
$$\frac{500}{499}G$$

4)
$$\frac{1}{499}G$$

The pressure exerted by an electromagnetic wave of intensity I (watt m⁻²) on a non-reflecting 7. surface is [c is the velocity of light]

$$2) Ic^2$$

4)
$$I/c^{2}$$

8. A beam of electrons is accelerated through a Potential difference V. It is then passed normally through a uniform magnetic field where it moves in a circle of radius r. It would have moved in a circle of radius 2r if it were initially accelerated through a Potential difference.

1)
$$\sqrt{2}$$
 V

3)
$$2\sqrt{2}$$
 V

A magnetic needle lying parallel to a magnetic field requires W units of work to turn it 9. through 60°. The torque required to maintain the needle in this position is

1)
$$\sqrt{3}$$
 W

2)
$$\frac{\sqrt{3}}{2}$$
 W

A thin rod of length 'L' and mass 'M' held vertically with one and fixed on the floor is 10. allowed to fall. The velocity of the other end when it hits the floor is

1)
$$\sqrt{3gL}$$

$$2)\sqrt{5gL}$$

$$2)\sqrt{5gL}$$
 3) $\sqrt{2gL}$

4)
$$\sqrt{gL}$$

In a step-up transformer, the turns ratio of primary and secondary is 1:2 A leclanche cell of 11. emf 1.5 V is connected a cross the primary. The voltage developed across the secondary would be

1) zero

2) 3.0 V

3) 1.5V

4) 0.75V

12. Choose the correct option

> 1) The radiation in increasing order of frequency are radio waves, micro waves, infrared, visible, ultraviolet, x-rays, gamma rays, cosmic rays.

2) The wave length of colours in increasing order violet, indigo blue, green, yellow, orange and red

3) The speed of light is maximum in vacuum.

4) All options are correct.

- A beam of light of wavelength λ is incident on a metal having work function ϕ and placed in 13. a magnetic field B. The most energetic electrons emitted perpendicular to the field are bent in circular arcs of radius R. Then
 - 1) $B = \frac{mv}{eR}$, Where $\frac{hc}{\lambda} = \phi + \frac{1}{2}mv^2$
- 2) $B = \frac{mR}{ev}$, Where $\frac{hc}{\lambda} = \phi + \frac{1}{2}mv^2$
- 3) $B = \frac{mv}{eR}$, Where $\frac{hc}{\lambda} = \phi + \frac{1}{2}mv^2$
- If the electron in a hydrogen atom jumps from the third orbit to the second orbit, the emitted 14. radiation has wave length. ('R' is Rydberg's constant).

- 4) $\frac{5R}{6}$
- Three-fourths of the active nuclei present in a radioactive sample decay in $\frac{3}{4}s$. The half-life of 15. the sample is
 - 1) 1 sec
- 2) ½ sec
- 3) ³/₄ sec
- 4) 3/8 sec

Find V_{AB} **16.**

1) 10V

- 2) 20V
- 3) 30V
- 4) None of these
- 17. A particle of mass m is projected with a velocity v making an angle of 45° with horizontal. The magnitude of the angular momentum of the projectile about the point of projection when the particle is at its maximum height h is
 - $1) m \sqrt{2gh^2}$

- 4) zero
- Which logic gate is represented by the following combination of logic gates 18.

1) OR

- 2) NAND
- 3) AND
- A ray of light falls on a transparent sphere with centre at C as shown in figure. The ray emerges from the sphere parallel to line AB. The refractive index of the sphere is

1) $\sqrt{2}$

- 2) $\sqrt{3}$

- 20. The focal length of a biconvex lens is 20 cm and its refractive index is 1.5. If the radii of curvatures of two surfaces of lens are in the ratio 1:2, then the larger radius of curvature is (in cm)
 - 1) 10

- 2) 15
- 3) 20

4) 30

21. In a CE transistor amplifier, the audio signal voltage across the collector resistance of $2k\Omega$ is 2V. If the base resistance is $1k\Omega$ and the current amplification of the transistor is 100, the input signal voltage is.

1) 0.1V

- 2) 1.0V
- 3) 1 mV
- 4) 10mV
- 22. YDSE is completely submerged in a transparent liquid. Which of the following graphs best represent the variation of the total number of fringes N observed on the screen with the index of refraction of the liquid μ

When the angle of incidence on a material is 60°, the reflected light is completely polarized. 23. The velocity of the refracted ray inside the material is $(in ms^{-1})$

1) 3×10^8

- 2) $\left(\frac{3}{\sqrt{2}}\right) \times 10^8$ 3) $\sqrt{3} \times 10^8$
- 4) 0.5×10^8
- If I = 5A and decreasing at a rate of $10^3 (A/\text{sec})$ then $V_R V_A$ 24.

1) 5V

- 2) 10V
- 3) 15V

4) 20V

25. **Match the Columns**

Ι

- II
- A) Work, torque, energy, heat
- B) Young's modulus, bulk modulus,

Shear modulus, pressure, stress

- C) Angular momentum, Plank's constant
- D) Momentum, impulse

- i) $ML^{-1}T^{-2}$
- ii) ML^2T^{-2}
- iii) MLT^{-1}
- **iv**) ML^2T^{-1}

- A B C D ii 1) iii iv
- 2) ii iv iii
- 3) iv iii ii
- A particle moves a long a straight line such that its displacement s at any time t is given by **26.** $s = t^3 - 6t^2 + 3t + 4$ metres, t being in second. The velocity when the acceleration is zero is 2) -12m/s3) 42 m/s
- A disc of mass M and radius R rolls on a horizontal surface and then rolls up and inclined 27. plane as shown in the figure. If the velocity of the disc is ν , then height to which the disc will rise will be

3)
$$\frac{v^2}{4g}$$

4)
$$\frac{v^2}{2g}$$

28.	0 1 0	·	/s at an angle 45° with leads $\alpha x - \beta x^2$, the ratio α / β	norizontal. The equation eta is
	1) 5	2) 10	3) 15	4) 20

- 29. A ship is travelling due east at a speed of 15km/h. Find the speed of a boat heading 30° east of north if it appears always due north from the ship.
 - 1) 30km/h 2) $\frac{15\sqrt{3}}{2}km/h$ 3) $10\sqrt{3}km/h$ 4) 20km/h
- 30. Four identical blocks each of mass m are linked by threads as shown. If the system moves with constant acceleration under the influence of force F, the tension T_2 is

31. The friction acting on the upper block is

1) 8N

- 32. A mass m moves with a velocity V and collides in elastically will another identical mass. After collision, the 1st mass moves with velocity $\frac{V}{\sqrt{3}}$ in a direction perpendicular to the initial direction of motion. Find the speed of the 2nd mass after collision.
 - 1) $\frac{2V}{\sqrt{3}}$ 2) $\frac{V}{\sqrt{3}}$ 2) $\frac{V}{\sqrt{3}}$ 4) $\sqrt{3}V$
- 33. A uniform cube of side 'a' and mass 'M' rests on a rough horizontal table. A horizontal force 'F' is applied normal to one of the faces at a point that is directly above the centre of the face at a height $\frac{3a}{4}$ above the base. The minimum value of 'F' for which the cube begins to topple about an edge is
 - 1) Mg 2) $\frac{3}{2}$ Mg 3) $\frac{2}{3}$ Mg 4) $\frac{1}{2}$ Mg
- 34. A point P lies on the axis of a ring of mass M and radius a, at a distance a from its centre c. A small particle starts from P and reaches c under gravitational attraction only. Its speed at c will be

1)
$$\sqrt{\frac{2GM}{a}}$$
 2) $\sqrt{\frac{2GM}{a}\left(1-\frac{1}{\sqrt{2}}\right)}$ 3) $\sqrt{\frac{2GM}{a}\left(\sqrt{2}-1\right)}$ 4) zero

35. Two blocks of mass m_1 and m_2 are attached to the lower end of a light vertical spring of force constant k. The upper end of the spring is fixed. When the system is in equilibrium the lower block (m_2) is removed. The other block (m_1) will

- 1) remain undisturbed
- 2) move through a distance $\frac{m_2 g}{k}$ and come to rest.
- 3) undergo vertical SHM with a time period of $2\pi \sqrt{\frac{m_1}{k}}$
- 4) undergo vertical SHM with a time period of $2\pi \frac{\sqrt{m_1 + m_2}}{k}$
- 36. The minimum phase difference b/w the two simple harmonic oscillations
 - $y_1 = \frac{1}{2}\sin \omega t + \left\lceil \frac{\sqrt{3}}{2} \right\rceil \cos \omega t$ and $y_2 = \sin \omega t + \cos \omega t$ is
 - 1) $\frac{\pi}{6}$

- 2) $-\frac{\pi}{6}$
- 3) $\frac{\pi}{12}$

- $4) \ \frac{7\pi}{12}$
- 37. A tank, which is open at the top, contains a liquid up to a height H. A small hole is made in the side of the tank at a distance y below the liquid surface. The liquid emerging from the hole lands at a distance x from the tank. Choose incorrect option.

- 1) If y is increased from zero to H, x will first increase and then decrease.
- 2) x is maximum for $y = \frac{H}{2}$
- 3) The maximum value of x is H.
- 4) The maximum value of x will depend on the density of liquid
- 38. If a metal wire is stretched a little beyond its elastic limit (or yield point), and release it will.
 - 1) lose its elastic property completely
- 2) not contract
- 3) contract, but its final length will be greater than its initial length
- 4) contract only up to its length at the elastic limit

- **39.** The ends of stretched wire of length L are fixed at x = 0 and x = L, In one experiment the **displacement of the wire is** $y_1 = A \sin\left(\frac{\pi x}{L}\right) \sin \omega t$ **and energy is v is** $y_2 = A \sin\left(\frac{2\pi x}{L}\right) \sin 2\omega t$ and energy is E_2 . Then
 - 1) $E_2 E_1$

- 2) $E_2 = 2E_1$ 3) $E_2 = 4E_1$ 4) $E_2 = 16E_1$
- The pressure-temperature (P-T) phase diagram shown below corresponds to the 40.

- 1) curve of fusion of solids that expand on solidification.
- 2) curve of sublimation of solids that directly go over to the vapour phase
- 3) curve of fusion of solids that contract on solidification
- 4) curve of fusion of solids that do not change in volume upon solidification.
- A whistle revolves in a circle with an angular speed of 20rad/s using a string of length 50cm. 41. If the frequency of sound from the whistle is 385Hz. Then what is the minimum frequency heard by an observer, which is far away from the centre in the same plane? (V = 340m/s)
 - 1) 333*Hz*
- 2) 374*Hz*
- 3) 385*Hz*.
- 4) 394*Hz*.
- 42. Which of the following gases has maximum rms speed at a given temperature
- 2) nitrogen
- 3) oxygen
- 4) carbon dioxide
- A 5g piece of ice at $-20^{\circ}C$ is put into 10g of water at $30^{\circ}C$. Assuming that heat is exchanged **43.** only b/w the ice and water. The final temperature of the mixture.
 - 1) $10^{0}C$
- 2) $20^{\circ}C$
- 3) $0^{0}C$
- 4) $15^{\circ}C$
- A carnot cycle has the reversible process in the following order. 44.
 - 1) Isothermal expansion, adiabatic expansion, isothermal compression and adiabatic compression.
 - 2) Isothermal compression, adiabatic expansion, isothermal expansion and adiabatic compression.
 - 3) Isothermal expansion, adiabatic compression, isothermal compression and adiabatic expansion.
 - 4) Adiabatic expansion, isothermal expansion, adiabatic compression and isothermal compression.
- A rod of thermal resistance 5K/W is joined at the middle of a n identical rod AB as shown. The temperature of C and heat current in CD will be

- 1) $35^{\circ}C,4W$ 2) $45^{\circ}C,4W$
- 3) $35^{\circ}C,3W$ 4) $45^{\circ}C,3W$

CHEMISTRY

46.	The number of electrons present on the oil drop which has the static electric charge of -3.02044×10^{-19} C is					
	1) 2	2) 5	3) 7	4) 8		
47.	Electrons are emitted	with zero velocity from	m a metal surface when	it is exposed to radiation		
	of wavelength 4000 A ⁰	. The threshold frequ	iency is			
	1) $5 \times 10^{34} \text{ sec}^{-1}$	2) $7.5 \times 10^{14} \text{ sec}^{-1}$	3) $9.2 \times 10^{14} \text{ sec}^{-1}$	4) $7.5 \times 10^{34} \text{ sec}^{-1}$		
48.	An element Z=120 has 1) IV A	s not yet been discover 2) VII A	red. In which group wou 3) II A	lld you place this element 4) V A		
49.	The correct matching	is				
	1) IE_1 : $Rb > K >$	Na	2) Radius : $I^+ < I >$	> I ⁻		
	3) $E.N$: $F < Cl < B$	er /	4) EA : $S > Se > O$			
50.	In a molecule of type	(AB_2L_3) , the central a	tom (A) contains two bo	ond pairs (B) and three		
		he shape of that molec				
	1) T-shape	2) See saw	3) V-shape	4) Linear		
51.	At a given temperatur oxygen is	re, the ratio of Kinetic	energy of 3 gram of hyd	lrogen and 4 gram of		
	1) 1:12	2) 12:1	3) 5:6	4) 3:4		
52.		resents the multiple of				
	1) 10 ⁻⁹	2) 10^{-12}	3) 10^{-18}	4) 10^{-21}		
53.	The specific gravity of	f 84% $\left(\frac{w}{w}\right) H_2 SO_4$ is 1	1.752. The normality of	solution is		
	1) 30.03 N	2) 2.05N	3) 39.5N	4) 4.5N		
54.	The Oxidation State of	of Fe in $[Fe(H_2O)_5 NC]$	O] ⁺² (Brown ring) is			
	1) +1	2) +2	3) +3	4) +6		
55.	In which of the follow	$\mathbf{ing} \ \Delta H > \Delta E$				
	1) $H_2 + I_2 \longrightarrow 2HI$ (g) (g)		2) $N_2 + 3H_2 \longrightarrow 2NH$ (g) (g) (g)			
	3) $PCl_5 \Longrightarrow PCl_3 + Cl_3 + Cl_3 = (g)$) AD	4) $2SO_2 + O_{(g)} \longrightarrow 2SO_2$	O_3		
56.	Identify the salt whose					
	1) NH_4Cl	2) $CuSO_4$	3) $Al_2(SO_4)_3$	4) <i>KCN</i>		
57.	The P^H of the water the	hat comes out from cat	tion exchange resin in sy	enthetic resin method is		
	1) <7	2) >7	3) 7	4) 10		
58.		ws high conductivity in				
	1) $Li^+_{(aq)}$	2) $K_{(aq)}^{+}$	3) <i>Rb</i> ⁺	4) Cs^+		
59.			a to Alumina should be			
	1) 1 to 2	2) 2.5 to 4	3) 5 to 7	4) 4.5 to 7.5		
60.	$B_2H_6 + 2NH_3 \xrightarrow{120^0C}$	A where 'A' is formul	lated as			
	1) $[BH_4]^+[BH_2(NH_3)$		$2) \left[BH_2 \left(NH_3 \right)_2 \right]^+ \left[BH_3 \left(NH_3 \right)_2 \right]^+ \left[BH_3 \left(NH_3 \right)_2 \right]^+ \left[BH_3 \left(NH_3 \right)_2 \right]^+ \left[NH_3 \left(NH$	-		
	3) $\left[BH_3(NH_3)\right]^+ \left[BH_3(NH_3)\right]^+$	$H_4(NH_3)$	$4) \left[BH_4 \left(NH_3 \right)_2 \right]^+ \left[BH_4 \left(NH_4 \right)_2 \right]^+ \left[BH_4 \left(NH_4 \right)_2 \right]^+ \left[BH_4 \left(NH$	H_2		
61.	The basic unit of pyro	silicate is				
	1) SiO_4^{-4}	$2) \left(SiO_3\right)_n^{-2n}$	3) $Si_2O_7^{-6}$	4) $(Si_2O_5)_n^{-2n}$		

62.	The pollutant that ca	uses methemo	oglobinemia (blue baby syndro	me) is
	1) Pb^{+2}	2) SO_4^{-2}	3) NO_3^-	4) AsO_3^{-3}

63. The IUPAC name of

- 1) 3 Formyl 3 methyl Pentane
- 2) 2 ethyl 2 methyl butanal
- 3) 2 ethyl 2 formylbutane
- 4) 2,2 Diethyl propanal
- $CH_2 = CH CH_2OH$ and $CH_2 = CH O CH_3$ are **64.**

 - 1) Chain isomers 2) Position isomers
 - 3) functional group isomers 4) metamers
- $A \leftarrow \frac{H_2}{Pd/BaSO_4} R C \equiv C R \frac{H_2}{Na/NH_3} \rightarrow B$. Where A and B are respectively **65.**
 - 1) Trans alkene, cis alkene

2) cis alkene, Trans alkene

3) cis alkene, cis alkene

4) Trans alkene, Trans alkene

66.

- 1) A=chlorobenzene
- B=Chlorobenzene
- 2) A=Lindane
- B=Chlorobenzene

- 3) A=BHC
- B=BHC
- 4) A=Chlorobenzene B=Lindane

- **67.** Glycerol is purified by
 - 1) Crystallisation

2) Fractional distillation

3) Vacuum distillation

- 4) sublimation
- **68.** The charge heated in the blast furnace contains ore, coke and limestone in the ratio by weight
 - 1) 1:2:3
- 2) 1:4:8
- 3) 8:4:1
- **69.** The outer electronic configuration of the element with Z=42 is
 - 1) $5s^2 4d^4$
- 2) $5s^1 4d^5$
- 3) $5s^2 5p^4$
- The catalyst used in the preparation of High density polythene (HDP) is **70.**
 - 1) $R_3Al + TiCl_4$ 2) $SnCl_4$
- 3) *Ni*

- The complex Fe(CO) follows the EAN rule. Then the value of 'x' is 71.

3) 5

- 4) 6
- 72. The sum of coordination number and oxidation number of the metal 'M' in the complex

$$\lfloor M(en)_2(C_2O_4)\rfloor Cl$$
 is

1) 6

2) 7

3) 8

- 4) 9
- The IUPAC name of the wilkinsons catalyst $\lceil RhCl(PPh_3)_3 \rceil$ is **73.**
 - 1) Chlorotris (triphenyl phosphine) rhodium (I)
 - 2) Chlorotris (triphenyl phosphine) rhodium (IV)
 - 3) Chlorotris (triphenyl phosphine) rhodium (O)
 - 4) Chlorotris (triphenyl phosphine) rhodium (VI)
- 74. Which of the following is 100 times sweeter than sugar
 - 1) sucralose
- 2) saccharin
- 3) Aspartame
- 4) Alitame

75.	Which of the following does not exhibit the p	
76	1) (+) sucrose 2) (+) Lactose	3) (+) Maltose 4) (-) Fructose
76.	Which of the following varies from species to	_
	1) A=T 2) C=G	3) A+G=C+T 4) $\frac{AT}{GC}$ ratio
77.	Which of the following is fully fluorinated po	olymer
-0	1) PVC 2) Thiokol	3) Teflon 4) Neoprene
78.	Which of the following can undergo both ald	
5 0	1) $CH_3 - CH_2 - CHO$ 2) CH_3 -CO- CH_3	3) $Cl_3C - CHO$ 4) C_6H_5CHO
79.	Primary, secondary and tertiary alcohols are methods?	e distinguished by which of the following
	1) Oxidation method	2) Lucas test
	3) Victor meyer's method	4) All of the above
80.	$(CH_3)_3 C - O - CH_3$ reacts with dil.HI gives	
	1) $(CH_3)_3 I + CH_3 OH$	2) $(CH_3)_3 COH + CH_3I$
	3) $(CH_3)_2 CHOH + CH_3I$	4) $(CH_3)_3 I + CH_3 I$
81.	(3/2	(5/3
	CH3	
	EMNOY / ROH A	
	KMNOy/KOH A Heat, H30t	
	eHzeHzcHz kmnou/koH Heat, Hzot	
	ENT COLLON	9
	(o)	B
	Heat, 130	In these reactions A and B are
	1) C_6H_5COOH and C_6H_5COOH	2) C_6H_5COOH and C_6H_5OH
	3) C_6H_5COOH and $C_6H_5CH_2CHO$	4) C_6H_5COOH and $C_6H_5CH_2CH_2CHO$
82.	Which of the following would not react with	benzene sulphonyl chloride in aq.NaOH?
	1) Aniline	2) Methylamine
	3) N,N-Dimethylaniline	4) N-Methyl ethanamine
83.	Atoms of element 'B' form hcp lattice and th	ose of the element 'A' occupy $\frac{2}{3}$ rd of tetrahedral
	voids. What is the formula of the compound	formed by the elements A and B.
	1) AB 2) A_2B	3) A_2B_3 4) A_4B_3
84.	The molar conductivity of $0.025 mol.lit^{-1}$ me	thanoic acid is $46.1 \ s.cm^2.mole^{-1}$. The degree of
	dissociation is? $\left(\lambda_{(H^+)}^0 = 349.6 \text{ s.cm}^2.mole^{-1}\right)$	$d\lambda^0$ = 54.6 s.cm ² mile ⁻¹
0.5	1) 0.114 2) 21.3	3) 3.66 4) 0.35
85.	reaction is 50% complete in 23	min. The time required to complete 90% of the
	1) 23min 2) 56min	3) 76.5min 4) 92min
86.	Among $[Fe(CN)_6]^{-4}$, PO_4^{-3} , SO_4^{-2} and Cl^- , wh	ich coagulates positive sol readily
		3) SO_4^{-2} 4) Cl^-
87.	Identify the correct matching	5, 55 ₄ T, 6t
07.	1) Thermal Stability - $NH_3 < PH_3 < AsH$	$H_{\circ} < SbH_{\circ}$
	2) Reducing Power - $NH_3 > PH_3 > Ash$	
	-	
	3) Basic Character - $NH_3 < PH_3 > As$	
	4) Volatile nature - $PH_2 > AsH_2 > \Lambda$	$\Pi_{\circ} \geq \mathcal{N} \mathcal{D} \Pi_{\circ}$

88.	Identify acidic oxide			
	1) Cl_2O_7	2) <i>CO</i> ₂	3) N_2O_5	4) All the above
89.	Among the following v	which one has the high	est oxidizing power	
	1) HOCl	2) $HClO_2$	3) <i>HClO</i> ₃	4) $HClO_4$
90.	The hybridization and	l number of lone pairs	present around 'Xe' at	com in XeF_4 is
	1) sp^3d , 3	2) $sp^3d^2, 2$	3) $sp^3d^3,1$	4) $sp^3,1$
	•	BIOL	OGY	· · ·
91.	Which of the following		includes all the other c	ategories?
	1) order	2) kingdom	3) species	4) family
92.	Muscles which regulat	, 0	, , <u>.</u>	, , , , , , , , , , , , , , , , , , ,
	1) Ectodermal striated	7/1	2) Mesodermal striated	
	3) Ectodermal unstriate	d	4) Mesodermal unstriat	ed
93.	•	g is not related to Rock		
	1) It is a Rhodophyceae		2) It contains chl.a and	
	3) Diplontic life cycle i		4) Two unequal lateral	•
94.	_		es in Peripheral Nervou	•
	A) Axolemma	B) Neurilemma	C) Endoneurium	D) Myelin sheath
	E) Axoplasm			
	_		le to outside w.r.to the	
0.5	1) E,A,B,D,C	2) E,A,D,C,B	3) E,A,C,B,D	4) E,A,D,B,C
95.	How many sentences a			
		on takes place through	onset	
	ii) It is free floating hyd	± •		
	iii) Pulvinus petiole is p			
	iv) It drains CO_2 from the			
	1) All are correct	2) Three are correct	3) Two are correct	4) one is correct
96.	Identify the correct sta			
	. •	rease rate of heart bear		
		ugh the sympathetic n	erves can increase rate	of heart beat and cardiac
	output		4 61 41 4	1 1
			rease rate of heart beat	_
		C	ase rate of heart beat a	•
07	1) A,B	2) B,C	3) C,D	4) A,D
97.	Mismatch is	-11	2) Calamanaida I	1:
	1) Lycopsida – Selagino		2) Sphenopsida – <i>Lycop</i>	
ΛO	3) Pteropsida – Adiantu		4) Psilopsida– (psilotur	n)
98.		combinations from the	ionowing	
	A) R.C.Dagar – Polyb			
	B) Kyoto protocol – D	= 3		
	· ·	servation of wildlife in		
	_	 Polychlorinated bipl 	•	
	1) all the above	2) A,B	3) C,D	4) A,B,C
99.	_	iospores produced in t		1
	1) Endogenously, Endo	_ ,	2) Exogenously, Endog	-
	3) Endogenously, Exog	•	4) Exogenously, Exoge	enously
100.	Defects in ADH recept	•		A) D 1 C 1 "
101	1) Diabetes mellitus	2) Diabetes insipidus	3) Uremia	4) Renal Calculi
101.	Pneumatophores are p		2) 17 1	4) D1: 1
	1) Rhizopus	2) Rhizobium	3) Vanda	4) Rhizophora

102.	Match the following:			
	Column I		Column II	
	A) J.G. Cells		i) Vasodilator	
	B) Hypothalamus		ii) Vasoconstrictor	
	C) Angiotensin II	7 4	iii) Vasopressin	
	D) Atrial Natriuretic F	actor	iv) Renin	
	A B C D 1) iv iii ii i			
	1) iv iii ii i 2) ii i iv iii			
	3) iii ii i iv			
	4) ii i iii iv			
103	Correct match is			
105.	1) Pinnately compound	leaf – Silk cotton	2) Alternate phyllotaxy	– Mustard
	3) Opposite phyllotaxy		4) Whorled phyllotaxy –	
	-, - FF F,	A	y waste a pary are tomaly	
104.	Identify the correct see	quence of "Systemic Ci	rculation" Pathway	
	-	_	orta \rightarrow tissues \rightarrow right at	rium
			$s \rightarrow veins \rightarrow right atrium$	
			$s \rightarrow \text{pulmonary veins} \rightarrow$	left atrium
	, ,	7/6 * NA N	sues \rightarrow veins \rightarrow left atriu	
105.	In mitochondria cytoc			
	1) Outer surface of the i		2) Outer surface of the o	outer membrane
	3) Inner surface of the in		4) Inner surface of the o	
106.	Study the following:			
	·	guarantee total protect	ion from a disease	
		nt to enhance immune		
			response	
	Which statement(s) is/		2) 0 1 0	4) NI
	1) Both $S_1 \& S_2$	2) Only S_1	3) Only S_2	4) None
107.	The abundant enzyme			
	a) Dual nature	b) Useful for CO_2 fixa	tion	
	c) Can also react with	O_2 in excess O_2 concer	ntration in C ₃ plants	
	1) Only a correct		2) Only a & b correct	
	3) Only a & c are correct	et	4) All are correct	
108.	During recovery from	vigorous physical exer	cise, deeper breathing c	ontinues as extra O_2 is
	required for			
	A) regeneration of oxy	hemoglobin		
	B) oxidation of accumi	ulated lactic acid		
	C) restoration of creat	ine phosphate		
	Choose the correct star	tements from the abov	e	
	1) A,B	2) A,C	3) B,C	4) all the above
109.	How many of the plan	ts having axile placenta	ation	
	a) Pisum	b) Brassica	c) Solanum	d) Allium
	e) Ruscus	f) Butea monosperma		
	1 4	2) 5 3)	6	4) 3
110.	Identify the mismatch			
	1) Insulin Shock – lack			
	2) Tetany – hyposecretic			
	3) Cretinism – congenit	* * *		
	4) Pituitary dwarf – Sex	ually & intellectually no	ormal	

111.	Which of the following	is wrongly matched in	the given table	
	1) Trichoderma	Bacteria	Immunosuppersive ager	nt
	polysporum			
	2) Streptococcus	Bacteria	Clot buster streptokinas	e
	3) Monoascus	Fungi	Blood cholesterol lower	
	purpureus			
	4) Yeast	Fungi	Ethanol Production	
112.	Choose the incorrect co	_	nology'	
	Male Reproductive Sys		eproductive System	
	1. Cowper's glands	Bartl	holin's glands	
	2. Prostate gland	Sken	e's gland	
	3. Scrotum	Labia	3	
	4. Glans Penis	Clito		
113.	The experiment Semice		of DNA was discovered	d plant by Taylor and
	colleagues is not having	g following character.	0.5	
	1) Nodular roots		2) Descendingly imbrica	
114	3) Parietal placentation		3) Non-endoseprmic see	eds
114.	Identify the incorrect S		uterine Devices (IUDs)	
	 They inhibit menstrua Promote phagocytosis 			
	3) Suppress the motility	-		
	4) make the uterus unsuit	_		
115.	Correct match is	naoie for implantation		
	A	В		
	i) ¹⁵ NH ₄ Cl	a) Ruben		
	ii) Ribosomes	b) Calvin		
	iii) H_2O^{18}	c) Meselson & stahl		
	iv) ${}^{14}CO_2$	d) George Palade		
	_	,		
	1) $i - b$ $ii - d$ $iii - d$ 2) $i - c$ $ii - d$ $iii - d$	$\begin{array}{ccc} a & \text{iv} - c \\ a & \text{iv} & b \end{array}$		
	3) $i - d$ $ii - a$ $iii - a$	$ \begin{array}{ccc} a & iv = 0 \\ b & iv = c \end{array} $		
	4) $i - a$ $ii - c$ $iii - c$			
116.	Match the following	u 1, 0		
,	A) World Ozone Day		i) September 16	
	B) World Population D)ay A DA	ii) March 21	
	C) World Biodiversity	Day	iii) May 22	
	D) World Forestry Day	y	iv) July 11	
			v) June 5	
		D		
		iii		
	,	i		
	,	v i		
117	4) i iv iii i The first animal for wh		a constructed was	
11/.	1) Drosophila	nen a mikage map was 2) Rat	3) Neurospora	4) Pisum stativum
118	Study the following:	2) Kut	3) Neurospora	+) I isum stativum
110.	a) lactiferous duct	b) mammary tubules	c) mammary ducts	d) ampulla
	e) alveoli	f) nipple	-,	
	· ·		.r. to milk ejection in m	ammary glands in human
	females		•	• 0
	1) e a b c d f	2) d c a b e f	3) e b c d a f	4) e c b a d f

119. Study the following table

Crop	Variety	Resistant
1.Brassica	Pusa swarnim	White rust
II. Okra	Pusa sawani	Shoot and stem borer
III. Chilli	Pusa Komal	Tobacco Mosaic Virus
IV. Flat bean	Pusa Gaurav	Bacterial blight
Identify correct pair	•	•

	1.Brassica	Pusa swarnim	White rust	
	II. Okra	Pusa sawani	Shoot and stem bor	er
	III. Chilli	Pusa Komal	Tobacco Mosaic Vi	irus
	IV. Flat bean	Pusa Gaurav	Bacterial blight	
	Identify correct pair			
400		•	B) II & III	4) I & II
120.	Study the following state			
	S_1 : Capacitation of sper		-	
	S_2 : Capacitation prepar			
	Choose the correct states	, ,		
	, 1 2) Only S_1	S) Only S_2	4) None
121.	Identify the mismatch			
	1) Zn^{+2} - Activates Carbo	xylases 2	2) Mo- Participate Nitr	ogen metabolism
	3) K^+ - Structural elemen	t 4	4) Mn - Splitting of wa	ater molecule
122.	select the mismatch from	O .		
	A) Hormone releasing II			
	B) Copper releasing IUD			
	C) Steroidal oral contract			
	D) Semen isn't produced	•	3) A,D	4) all the above
123	1) A,B,C 2 The year 1900 AD is high			4) all the above
123.	1)Discovery of genes		2)Principles of linkage	
	3)Chromosome theory of		1)Rediscovery of mend	lelism
124.	Study the following period	•	· ·	
			C) Silurian	D) Devonian
	•) Ordovician		, , , , , , , , , , , , , , , , , , ,
	1) c d e a f b 2	ebdafc3	B) b f c d a e	4) b c f a d e
125.		List II		
	• •	Hormone		
	_ ·	. KICIII		
		ii. Enzyme v. Codeine		
	Correct match is	v. Coueme		
	1) A-III B-I C-II D-IV		2) A-IV B-I C-III D	-I
	3) A-II B-III C-I D-IV		4) A-I B-III C-II I	
126.	Fossils discovered in Jav			
	1) Homo habilis		2) Homo erectus	
	3) Homo neanderthalensis	2	1) Ramapithecus	
127.	Common Nucleotides (ni	_	_	
4.00	·	·	B) ATC	4) G C U
128.	Which of the following e	_		
	1) Placental mammals in A		2) Darwin Finches	
120	3) Australian Marsupials Some aminoacids are coo		4) all the above	y of genetic code is called
147,		•	3) Degenerate	4) Specific
	,	,	,	/ I

14

130.	Study the following statements S_1 : Insulin isn't taken orally, for it is a protein and is broken down before it is absorbed						
	S_2 : Genetically engin	S_2 : Genetically engineered E.coli is used to produce humulin					
	Select the correct stat	ement(s) from the above	ve				
	1) both $S_1 & S_2$	2) Only S_1	3) Only S_2	4) None			
131.	Casparian bands cont	taining layer is absent i	n				
	1) Monocot stem	2) dicot root	3) Monocot root	4) Dicot stem			
132.	Polymerase Chain Reaction:						
	1) Can detect HIV						
	2) Can detect very low						
	3) Can detect mutations in gene in suspected cancer patients						
122	4) All the above						
155.	Hydrophily is absent 1) Vallisnera	111 2) Hydrilla	3) Water lily	4) Zostera			
134	'Hisardale' is an exan		3) Water my	T) Zosiera			
10	1) Out – Crossing	inpic oil	2) Cross – Breeding				
	3) Out – Breeding		4) Inter – Specific hybridization				
135.	The most abundant p	rokaryotes helpful to h	umans in making curd				
	production of antibiotics are the ones categorized as						
	1) Cyanobacteria 2) Mycoplasmas 3) Chemoautotroph 4) Heterotrophic bacteria						
136.	_	-	thod, fertilized eggs at v	which stage are transferred			
	to surrogate mothers'						
	1) 4 -16 cells 2) 8 - 32 cells 3) 6 - 8 cells 4) 18 - 32 cells						
137.	Which statement is w	_	0) 411 111 .				
	1) They contain either		2) All are obligate	•			
120	3) They can synthesize nucleic acid and proteins 4) All of them have helical symmetry						
138.	Match the following:						
	Column I Column II						
	A. Ig G i) Present in milk B. L. A. ii) Present are surface of B. Calla						
	B. Ig A ii) Present on surface of B-Cells C. Ig D iii) A str ag a mediator in allowing reactions						
	C. Ig D iii) Acts as a mediator in allergic reactions by Gregges placents, & provides natural passive immunity						
	D. Ig E iv) Crosses placenta & provides natural passive immunity A B C D						
	1) ii i iv						
	2) iv i ii	iii					
	3) iv ii i	iii					
	4) ii iii i	iv					
139.	Which of the biological function is not yet known						
	1) Protein synthesis	2) Photorespiration	3) Photosynthesis	4) Respiration			
140.	Trachea contains						
	1) Ciliated Columnar 2) Non-Ciliated Columnar						
	3) Ciliated pseudo – str	ratified	4) Non- ciliated pseudo	Non- ciliated pseudo – stratified			
141.	Upward flow of water	Upward flow of water through the Xylem in plants can acheive fairly high rates upto					
	1) 15cms/hour	2) 15mm/hour	3) 15 meters/hour	1) 25 meters /hour			

From the diagram given above A,B,C,D are respectively, occupied by

- 1) Duodenum, Duct from gall bladder, Pancreas, Gall bladder.
- 2) Duodenum, Gall bladder, Pancreas, Duct from gall bladder.
- 3) Pancreas, Duct from gall bladder, Duodenum, Gall bladder.
- 4) Pancreas, Hepato Pancreatic duct, Duodenum, Gall bladder.
- 143. The chromosomes in which centromere is situated close to its end
 - 1) Acrocentric
- 2) Telocentric
- 3) Metacentric
- 4) Submetacentric
- 144. A chronic disorder in which alveolar walls are damaged due to which respiratory surface is decreased. Identify it
 - 1) Bronchitis
- 2) Asthma
- 3) Emphysema
- 4) None of the above
- 145. Which of the following hormone shows respiratory climatic
 - 1) ABA
- 2) GA
- 3) Ethylene
- 4) cytokinins

- 146. Identify the wrong statement(s)
 - A) Since the origin of life on earth, there were six episodes of mass extinction of species
 - B) The current species extinction rates are many time faster than in the pre-human times
 - C) Ecologists warn that if the present trends of extinction were to be continued, about half of all the species on earth might be wiped out within the next 100 years.
 - D) Biodiversity hotspots could reduce the ongoing mass extinctions by about 30 percent
 - 1) A F

- 2) C,D
- 3) Only A
- 4) Only D
- 147. Cell A with π = -15 bars P =9bars, Cell B with π = -10 bars P =8. bars The movement of water is from
 - 1) Both direction
- 2) $A \rightarrow B$
- 3) $B \rightarrow A$
- 4) Nomovement
- 148. Fallowing diagram refers to the relative contribution of Greenhouse gases to global warming. Study the diagram and answer.

A, B, C, D in the diagram are respectively, occupied by

1) CH_4 , CO_2 , CFCs, N_2O

2) CO_2 , CH_4 , CFCs, N_2O

3) CH_4 , CO_2 , N_2O , CFCs

- 4) CFCs, CO_2 , N_2O , CH_4
- 149. Suppressed cotyledon present in maize is called
 - 1) Scutellum
- 2) Epiblast
- 3) Plumule
- 4) Coleoptile

150.	Volume of air that remains in the lungs after a normal expiration includes:						
	1) Inspiratory Reserve volume + Residual volume						
	2) Expiratory Reserve volume + Residual volume						
	3) Vital capacity + Residual volume						
4 = 4	4) Expiratory Reserve volume + Tidal volume						
151.	151. Which of the would appear as the pioneer organisms on bare rocks						
150	1) Mosses	2) Lichens	3) Liver worts	4) Green algal			
152.		=	s of Oestrogen in post-meno				
152	1) Osteoarthritis 2) Tetany 3) Osteoporosis 4) Myaesthenia gr 3. Dual Function containing codon identifies the following aminoacid						
155.	1) Methionine	_	3) serine				
154	1) Methionine 2) Glycine 3) serine 4) proline Following diagram refers to the sectional view of cochlea, go through it carefully.						
134.	Tollowing diagram	refers to the section	ar view or coeffica, go throu	gn it carciuny.			
	Even the diagram A. P. C. Dave requestively assumed by						
	From the diagram A, B, C, D are, respectively, occupied by 1) Organ of corti. Basilar membrane. Scala vestibuli. Scala tympani.						
		 Organ of corti, Basilar membrane, Scala vestibuli, Scala tympani. Organ of corti, Reissner's membrane, Scala vestibuli, Scala tympani. 					
	3) Reissner's membrane, Tectorial membrane, Scala vestibuli, Scala tympani.						
	4) Organ of corti, tectorial membrane, Scala vestibuli, Scala tympani.						
155.	Which of the follow						
	1) Sonalika – Rice	2) Jaya – Wheat		4) Atlas66 – maize			
156.	Read the following	statements					
	S_1 : Fovea is a thinned out – portion of retina where only rods are densely packed						
	S_2 : Fovea is a point	S_2 : Fovea is a point of greatest visual acuity					
	Select the correct st		-				
	1) both $S_1 \& S_2$	2) Only S_1	3) Only S_2	4) None			
157.	Maize leads to presi	istance to maize sten	n borers due to				
	1) Low aspartic, acid. Low nitrogen and sugar content						

- Low aspartic, acid, Low nitrogen and sugar content
 High aspartic, high nitrogen and sugar
- 3) High aspartic low nitrogen and sugar

iv

4)

iii

ii

4) High aspartic, low nitrogen and high sugar 158. Match the items given in Column I with those in Column II, and select correct option given below Colum

Column I					Column II		
a. Ophrys					i. Cardiac glycoside		
b.	b. Calotropis				ii. Poisonous weed		
c. Monarch butterfly				fly	iii. Sexual deceit		
d.	d. Warblers				iv. Resource Partitioning		
	a	b	c	d			
1)	iii	i	ii	iv			
2)	i	iii	iv	ii			
3)	ii	i	iii	iv			

150	Number of characters relat	idantations containin	o Onuntia				
157.	a. Stomata opened during of		b. CAM Pathway				
	c. Leaves are absent – mod	•	<u> </u>				
		ll are correct	3) acd correct	4) bcd are correct			
160.	Read the following stateme		,	,			
	A) Heroin commonly called		ally diacetylmorphine				
	B) Heroin is obtained form	B) Heroin is obtained form latex of poppy plant					
	C) The drug which is obtain	C) The drug which is obtained from Erythroxylem <i>coca</i> interferes with neuro – transmitter					
	dopamine						
	D) Cannabinoids effect car	dio – vascular sys	tem of the human bo	dy			
	Select the correct combinat	ions from the abo	ove				
	1) All the above 2) A	A,B,C	3) B,D	4) B,C,D			
161.	The Avena curvature is use	ed for bioassay of					
	1) ABA 2) 1	AA	3) Cytotoknin	4) GA_3			
162.	Vector control Research C	entre					
	1) New Delhi		2) Lucknow				
	3) Puducherry		4) Mumbai				
163.	S phase of its cell cycle, as	_	_	s has			
	1) same number of chromoso						
	2) Twice the number of chromosomes and four times the amount DNA3) Twice the number of chromosomes and Twice the amount of DNA						
	•						
164	4) Four times the number of Match Column I with Colu		I wice the amount of I	JNA			
107.	Column I	Column II					
	A) ZW – ZZ type	i) Grass hop	pers				
	B) ZO – ZZ type	ii) Drosophila	_				
	C) XX – XY type	iii) Fumea Mo	oths				
	D) XX – XO type	iv) Birds					
	A B C D 1) iv iii ii i						
	2) iii iv ii i 3) ii iii iv i						
	3) ii iii iv i 4) i iv iii ii						
165	The term ecosystem was co	ined by					
105.	•	Odum	3) Misra	4) A.G & Tansley			
166.	In the Chart, mutant trait is shaded black.						

The Gene responsible for the trait is:

1) dominant, sex linked

2) recessive, autosomal

3) dominant, autosomal

- 4) recessive, sex limited
- 167. Which of the following is not included in periderm.
 - 1) Phellem

2) Late wood

3) phelloderm

4) cork cambium

168. What is the basis of DNA fingerprinting?

- 1) Relative proportions of purines & pyrimidines in DNA
- 2) Satellite DNA occurring as highly repeated short DNA segments
- 3) Relative amount of DNA in the ridges & grooves of fingerprints
- 4) All the above

169. Endosperm is n and 3n respectively in

1) Dicots, Monocots

2) Bryophyta, Pteridophyta

3) Gymnosperms, Dicots

4) Pteridophytes, Gymonosperms

170. The region of biosphere reserve where limited human activity is allowed for research, education and resource use strategies

- 1) Core Zone
- 2) Transition Zone
- 3) Buffer Zone
- 4) Restoration Zone

171. Which of the following RNA's should be most abundant in animal cell

- 1) SnRNA
- 2) mRNA
- 3) collagen
- 4) Rrna

172. Identify the animal which isn't a homeotherm:

- 1) Ornithorhyncus
- 2) Aptenodytes
- 3) *Ichthyophis*
- 4) Neophron

173. If there are 999 bases in an RNA that codes for a protein with 333 Amino acids and the base at position 901 is deleted such that the length of the RNA becomes 998 bases, how many codons will be altered

1) 333

- 2) 666
- 3) 11

4) 33

174. Which of the following animal possess file-like rasping organ in its mouth?

- 1) Pleurobranchia
- 2) Alplysia
- 3) Pentaceros
- 4) Lepisma

175. What is the criteria for DNA fragments movement on agarose gel during gel eletrophorosis

- 1) The smaller the fragment size, the farther it moves
- 2) Negatively charged fragments do not move
- 3) The larger the fragment the farther it moves
- 4) Positively charged fragments move to farther end

176. Study the following statements, carefully

- S_1 : Thermoregulation is energetically expensive for many organisms, especially the large animals
- S_2 : Small animals have a smaller surface area of body relative to their body volume Select the correct statement(s) from the above
- 1) both S_1 & S_2
- 2) Only S_1
- 3) Only S_2 4) None

177. Observe the sigmoid curve given below and identify the phases A,B and C:

- 1) A= Initial slow growth, B= Rapid growth, C=Phase of growth during limited nutrient supply
- 2) A= Rapid growth, B= Initial slow growth, C=Phase of growth during limited nutrient supply
- 3) A=Lag Phase, B=Stationary phase, C= Exponential phase
- 4) A= Exponential phase, B=Stationary phase, C=Lag phase

- 178. Select the correct statements about Nutrient Cycles
 - A) The amount of nutrients, present in the soil at any given time is called 'Standing Crop'
 - B) The function of the 'reservoir' (of different nutrient cycles) is to meet with the deficit which occurs due to imbalance in the rate of influx and efflux.
 - c) Atmospheric inputs of phosphorus through rainfall are equal to carbon inputs
 - D) Gaseous exchanges of phosphorus between organism and environment are negligible
 - 1) B,D

- 2) C,D
- 3) A,B

4) A,C

179. Identify the enzyme X and Y?

- 1) X= RNA ligase, Y= DNA ligase
- 2) X=Bam HI, Y=RNA-ligase

3) X = Eco RI, Y = DNA-ligase

- 4) X = Hind III, Y = RNA ligase
- 180. Study the following statements about Medical Termination of Pregnancy (Amendment) Act, and identify the correct statement(s).
 - 1) It was amended by the Government of India in 2017
 - 2) According to this Act, a pregnancy may be terminated on certain grounds within the first 12 Weeks of pregnancy on the opinion of one registered medical practitioner.
 - 3) According to this Act, if the pregnancy has lasted between 12 weeks to 24 weeks, the opinion of two registered medical practitioners must be sought for the termination of pregnancy on certain grounds.
 - 4) All the above.

