Daily Practice Problems

NEET PHYSICS

Topic: Work, Power Energy

Q. 1 A man pushes a wall and fails to displace it. He does -
(1) negative work
(2) positive but not maximum work
(3) no work at all
(4) maximum work
Q. 2 A body travels through a distance of 10 m on a straight line, under the influence of 5 N . If the work done by the force is 25 J , the angle between the force and displacement is-
(1) $0^{\mathbf{o}}$
(2) 30
(3) $60{ }^{\circ}$
(4) 90°
Q. 3 A blocks is moved from rest through a distance of 4 m along a straight line path. The mass of the blocks is 5 kg. and the force acting on it is 20 N . If the kinetic energy acquired by the block be 40 J , at what angle to the path the force is acting-
(1) 30°
(2) 60°
(3) 45°
(4)none of the above
Q. 4 A force $\mathbf{F}=(3 \hat{i}+4 \hat{j})$ Newton (where \mathbf{x} is in metres) acts on a particle which moves from a position ($2 \mathrm{~m}, 3 \mathrm{~m}$) to $(3 \mathrm{~m}, 0 \mathrm{~m})$. Then the work done is
(1) 7.5 J
(2) -12J
(3) -9 J
(4) +4.5 J
Q. $5 \quad$ A chain of mass M is placed on a smooth table with $1 / n$ of its length L hanging over the edge. The work done in pulling the hanging portion of the chain back to the surface of the table is -
(1) MgL/n
(2) $M g L / 2 n$
(3) $\mathrm{MgL} / \mathrm{n}^{2}$
(4) $M g L / 2 n^{2}$
Q. 6 The relationship between force and position is shown in fig (in one dimensional case). The work done in displacing a body from
$x=1 \mathrm{~cm}$ to $x=5 \mathrm{~cm}$ is :

(1) 20 erg
(2) 60 erg
(3) 70 erg
(4) 700 erg
Q. $7 \quad$ A force $\vec{F}=2 \hat{i}-3 \hat{j}+7 \hat{k}$ (N) acts on a particle which undergoes a displacement $\vec{r}=\mathbf{7} \hat{i}+3 \hat{j} \mathbf{- 2} \hat{k}$ (M). Calculate the work done by the force
(1) 37 J
(2) -9 J
(3) 49 J
(4) 14 J
Q. 8 A pump ejects 12000 kg of water at speed of $4 \mathrm{~m} / \mathrm{s}$ in 40 second. Find the average rate at which the pump is working
(1) 0.24 KW
(2) 2.4 W
(3) 2.4 KW
(4) 24 W
Q. $9 \quad$ An object of mass m accelerates uniformly from rest to a speed v_{f} in time t_{f}. Then the instantaneous power delivered to the object, as a function of time t is -
(1) $\mathrm{mt}\left(\frac{V_{f}}{t_{f}}\right)^{2}$
(2) mt $\frac{V_{f}}{t_{f}}$
(3) $\frac{1}{2} \mathbf{m t}^{2}\left(\frac{V_{f}}{t_{f}}\right)^{2}$
(4) $\frac{1}{2} \mathbf{m t}^{2}\left(\frac{V_{f}}{t_{f}}\right)$
Q. 10 A self propelled vehicle of mass m whose engine delivers constant power P has an acceleration $\mathbf{a}=\frac{P}{m v}$ (assume that there is no friction). In order to increase its velocity from $\mathbf{v}_{\mathbf{1}}$ to $\mathbf{v}_{\mathbf{2}}$, the distance it has to travel will be
(1) $\frac{3 P}{m}\left(\mathbf{v}_{\mathbf{2}}{ }^{\mathbf{2}}-\mathbf{v}_{\mathbf{1}}{ }^{\mathbf{2}}\right)$
(2) $\frac{m}{3 P}\left(\mathbf{v}_{\mathbf{2}}{ }^{\mathbf{3}}-\mathbf{v}_{\mathbf{1}}{ }^{\mathbf{3}}\right)$
(3) $\frac{m}{3 P}\left(\mathbf{v}_{\mathbf{2}}{ }^{\mathbf{2}}-\mathbf{v}_{\mathbf{1}}{ }^{\mathbf{2}}\right)$
(4) $\frac{m}{3 P}\left(\mathbf{v}_{\mathbf{2}}-\right.$
$\left.v_{1}\right)$
Q. 11 If a force F is applied on a body and it moves with a velocity v, the power will be-
(1) F v
(2) F/v
(3) F / v^{2}
(4) $F v^{2}$
Q. 12 A light and a heavy body have equal momentum. Which one has greater K.E.?
(1) the light body
(2) both have equal K.E.
(3) the heavy body
(4) data given is incomplete
Q. 13 A 300 g mass has a velocity of $(3 i+4 j) \mathrm{m} / \mathrm{s}$ at a certain instant what is its K.E. ?
(1) 1.35 J
(2) 2.4 J
(3) 3.75 J
(4) 7.35 J
Q. 14 Two bodies of mass 1 kg and 4 kg are moving with equal kinetic energies. The ratio of their linear momentum is-
(1) $1: 2$
(2) $2: 1$
(3) $4: 1$
(4) $1: 4$
Q. 15 Two springs A and $B\left(k_{A}=2 k_{B}\right)$ are stretched by applying forces of equal magnitudes at the four ends. If the energy stored in A is E, that in B is
(1) $E / 2$
(2) 2 E
(3) E
(4) E/4
Q. 16 The principle of conservation of energy implies that-
(1) the total mechanical energy is conserved.
(2) the total kinetic energy is conserved
(3) the total potential energy is conserved.
(4) sum of all types of energies is conserved.
Q. 17 A force ' F ' stops a body of mass ' m ' moving with a velocity ' u ' in a distance ' s '. The force required to stop a body of double the mass moving with double the velocity in the same distance is-
(1) 2 F
(2) 4 F
(3) 6 F
(4) 8 F
Q.18 A bomb at rest explodes into two parts of masses m_{1} and m_{2}. If the momentums of the two parts be p_{1} and p_{2}, then their kinetic energies will be in the ratio of-
(1) m_{1} / m_{2}
(2) m_{2} / m_{1}
(3) p_{1} / p_{2}
(4) p_{2} / p_{1}
Q.19 A body of mass m collides against a wall with the velocity v and rebounds with the same speed. Its change of momentum is-
(1) 2 mv
(2) mv
(3) - mv
(4) 0
Q. 20 A bomb initially at rest explodes by it self into three equal mass fragments. The velocities of two fragments are $(3 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}$ and $(-\hat{i}-4 \hat{j}) \mathrm{m} / \mathrm{s}$. The velocity of the third fragment is (in $\mathrm{m} / \mathrm{s})-$
(1) $2 \hat{i}+2 \hat{j}$
(2) $2 \hat{i}-2 \hat{j}$
(3) $-2 \hat{i}+2 \hat{j}$
(4) $-2 \hat{i}-2 \hat{j}$
Q. 21 A stone of mass m_{1} moving with a uniform speed v suddenly explodes on its own into two fragments. If the fragment of mass m_{2} is at rest, the speed of the other fragment is-
(1) $\frac{m_{1} v}{\left(m_{1}+m_{2}\right)}$
(2) $\frac{m_{2} v}{\left(m_{1}-m_{2}\right)}$
(3) $\frac{m_{1} v}{\left(m_{1}+m_{2}\right)}$
(4) $\frac{m_{1} v}{m_{2}}$
Q. 22 A monkey of mass 20 kg rides on a 40kg trolley moving with constant speed of $8 \mathrm{~m} / \mathrm{s}$ along a horizontal track. If the monkey jumps vertically to grab the overhanging branch of a tree, the speed of the trolley after the monkey has jumped off is -
(1) $8 \mathrm{~m} / \mathrm{s}$
(2) $1 \mathrm{~m} / \mathrm{s}$
(3) $4 \mathrm{~m} / \mathrm{s}$
(4) $12 \mathrm{~m} / \mathrm{s}$

Reg.Office : A-14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.
Q. 23 A nucleus of mass number A originally at rest emits a-particle with speed v. The recoil speed of daughter nucleus is :
(1) $\frac{4 v}{A-4}$
(2) $\frac{4 v}{A+4}$
(3) $\frac{v}{A-4}$
(4) $\frac{v}{A+4}$
Q. 24 Two particles A and B which are initially at rest move towards each other under the mutual force of attraction. At the instant when the speed of A is v and the speed of B is $2 v$. The speed of the centre of mass of the system is -
(1) v
(2) 1.5 v
(3) $3 v$
(4) zero
Q. 25 Which of the following force is conservation force -
(1) Electrostatic
(2) Frictional
(3) Viscous
(4) Air resistance
Q. 26 Which one of the following force is non-conservative?
(1) Gravitational force
(2) Electrostatic force
(3) Lorentz force
(4) Viscous force
Q. 27 A body is dropped from a certain height. When it lost an amount of P.E. ' U ', it acquires a velocity ' v '. The mass of the body is-
(1) $\frac{2 U}{v^{2}}$
(2) $\frac{2 v}{U^{2}}$
(3) $\frac{2 v}{U}$
(4) $\frac{U^{2}}{2 v}$
Q. 28 A block of mass m slides down along the surface of the bowl (radius R) from the rim to the bottom. The velocity of the block at the bottom will be-
(1) $\sqrt{(\pi R g)}$
(2) $2 \sqrt{(\pi R g)}$
(3) $\sqrt{(2 R g)}$
(4) $\sqrt{(g R)}$
Q. 29 A sphere is suspended by a thread of length l. What minimum horizontal velocity is to be imparted to the sphere for it to reach the height of suspension?
(1) $\sqrt{g l}$
(2) $g l$
(3) $\sqrt{2 g l}$
(4) $\sqrt{l / g}$
Q. 30 A body of mass $\mathbf{m k g}$ is rotating in a vertical circle at the end of a string of length r metre. The difference in the K.E. at the top and bottom of the circle is-
(1) mgr
(2) 2 mgr
(3) $\frac{m g}{r}$
(4) $\frac{2 m g}{r}$

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	3	2	3	4	1	2	3	1	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	1	3	1	2	4	4	2	1	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	1	4	1	4	1	3	3	2

