TM

Daily Practice Problems

NEET PHYSICS

Topic: Simple Harmonic Motion

Q. 1 The maximum K.E. of a oscillating spring is 5 joules and its amplitude 10 cms . The force constant of the spring is:
(1) 100 Newton/m
(2) 1000 Newton-m
(3) 1000 Newton/m
(4) 1000 watts
Q. 2 A particle executes SHM with a frequency f. The frequency of its P.E. will be:
(1) $\mathrm{f} / 2$
(2) f
(3) $2 f$
(4) $4 f$
Q. 3 The force acting on a 4 gm mass in the potential field $U=8 x^{2}$ at $x=-2 \mathrm{~cm}$ is:
(1) 8 dyne
(2) 4 dyne
(3) 16 dyne
(4) 32 dyne
Q. 4 On suspending a mass m from a spring of force constant k, frequency of vibration f is obtained. If a second spring as shown in the figure, is arranged then the frequency will be:

(1) $\mathrm{f} \sqrt{2}$
(2) $\mathrm{f} / \sqrt{2}$
(3) $2 f$
(4) f
Q. 5 In the adjoining figure the frequency of oscillation for a mass m will be proportional to:

(1) $k_{1} k_{2}$
(2) $k_{1}+k_{2}$
(3) $\sqrt{\mathrm{k}_{1}+\mathrm{k}_{2}}$
(4) $\sqrt{1 /\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}$
Q. 6 An object of mass m is suspended from a spring and it executes S.H.M. with frequency v. If the mass is increased 4 times, the new frequency will be:
(1) $2 v$
(2) $v / 2$
(3) v
(4) $v / 4$
Q. 7 A shown in the figure, two light springs of force constant k_{1} and k_{2} oscillate a block of mass m. Its effective force constant will be:

(1) $k_{1} k_{2}$
(2) $k_{1}+k_{2}$
(3) $\frac{1}{\mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}$
(4) $\frac{\mathrm{k}_{1} \mathrm{k}_{2}}{\mathrm{k}_{1}+\mathrm{k}_{2}}$
Q. 8 The spring constant of two springs of same length are k_{1} and k_{2} as shown in figure. If an object of mass m is suspended and set vibration, the time period will be:

(1) $2 \pi \sqrt{\frac{\mathrm{mk}_{1}}{\mathrm{k}_{2}}}$
(2) $2 \pi \sqrt{\frac{m}{k_{1} k_{2}}}$
(3) $2 \pi \sqrt{\frac{m}{k_{1}-k_{2}}}$
(4) $2 \pi \sqrt{\mathrm{~m} /\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}$

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.
Q. 9 The total spring constant of the system as shown in the figure will be:

(1) $\frac{\mathrm{k}_{1}}{2}+\mathrm{k}_{2}$
(2) $\left[\frac{1}{2 \mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}\right]^{-1}$
(3) $\frac{1}{2 \mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}$
(4) $\left[\frac{2}{\mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}\right]^{-1}$
Q. 10 Some springs are combined in series and parallel arrangement as shown in the figure and a mass m is suspended from them. The ratio of their frequencies will be:

(1) $1: 1$
(2) $2: 1$
(3) $\sqrt{3}: 2$
(4) $4: 1$
Q. 11 The force constant of a spring is k. The amount of work done in expanding it from ℓ_{1} to ℓ_{2} will be:
(1) $k\left(\ell_{2}-\ell_{1}\right)$
(2) $k\left(\frac{\ell_{1}+\ell_{2}}{2}\right)$
(3) $\mathrm{k}\left(\ell_{2}^{2}-\ell_{1}^{2}\right)$
(4) $\frac{\mathrm{k}}{2}\left(\ell_{2}^{2}-\ell_{1}^{2}\right)$
Q. 12 A spring is made to oscillate after suspending a mass m from one of its ends. The time period obtained is 2 seconds. On increasing the mass by 2 kg , the period of oscillation is increased by 1 second. The initial mass m will be:
(1) 2 kg
(2) 1 kg
(3) 0.5 kg
(4) 1.6 kg
Q. 13 The force constant of spring A is greater than that of spring B. If their lengths are elongated by same amount, which of the following statement is correct ?
(1) The work done on A will be greater than that on B
(2) The work done on B will be greater than that on A
(3) Work done on both the springs will be equal, if their initial lengths are same
(4) Work done on both of them will be equal
Q. 14 The time period of a spring pendulum on earth is T. If it is taken on the moon, and made to oscillate, the period of vibration will be :
(1) Less than T
(2) Equal to T
(3) More than T
(4) None of these
Q. 15 The length of a spring becomes 10 cm on suspending a mass of 20 kg in a vertical plane and 12 cms on suspending 32 kg . What should be the weight suspended from it so as to cause the length to be $15 \mathrm{cms}\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}\right)$:
(1) 40 kg
(2) 50 kg
(3) 60 kg
(4) 80 kg
Q. 16 On loading a spring with bob, its period of oscillation in a vertical plane is T. If this spring pendulum is tied with one end to the a friction less table and made to oscillate in a horizontal plane, its period of oscillation will be-
(1) T
(2) 2 T
(3) $\mathrm{T} / 2$
(4) will not execute S.H.M.
Q. 17 In a winding (spring) watch, the energy is stored in the form of :
(1) Kinetic energy
(2) Potential energy
(3) Electrical energy
(4) None of these
Q. $18 \quad A$ and B are two similar springs, of which A is more rigid than B i.e. $k_{A}>k_{B}$. These are pulled through the same length. The work done in these cases is:
(1) More in spring A
(2) More in spring B
(3) Equal in spring A and B
(4) No definite information can be furnish in this connection

Reg.Office : A-14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.
Q. 19 In the previous question, on pulling the springs with equal force, the work done in spring A is:
(1) More than spring B
(2) Less than spring B
(3) Equal to spring B
(4) Nothing certain can be stated
Q. 20 In an artificial satellite, the object used is:
(1) Spring watch
(2) Pendulum watch
(3) Watches of both spring and pendulum
(4) None of these
Q. 21 The length of a spring is ℓ and its spring constant is k . It is cut into two parts of lengths ℓ_{1} and ℓ_{2} and $\ell_{1}=\mathrm{n} \ell_{2}$. The spring constant k_{1} of the part ℓ_{1} will be:
(1) $k(1+1 / n)$
(2) $k(1-1 / n)$
(3) $k(1+1 / 2 n)$
(4) $k(1-1 / 2 n)$
Q. 22 An object of 4 kg mass, moving at $6 \mathrm{~m} / \mathrm{sec}$ velocity strikes a spring \& compresses it by a distance x . If the force constant of the spring is $900 \mathrm{~N} / \mathrm{m}$. What is the value of x :
(1) 4 cm
(2) 40 cm
(3) 20 cm
(4) None of these
Q. 23 The time period of an oscillating body executing SHM is 0.05 sec and its amplitude is 40 cm . The maximum velocity of particle is:
(1) $16 \pi \mathrm{~ms}^{-1}$
(2) $2 \pi \mathrm{~ms}^{-1}$
(3) $3.1 \mathrm{~ms}^{-1}$
(4) $4 \pi \mathrm{~ms}^{-1}$
Q. 24 The mass of a bob, suspended in a simple pendulum is halved from the initial mass, its time period will:
(1) Be less
(2) Be more
(3) Remain unchanged
(4) None of these
Q. 25 The length of a simple pendulum is $39.2 / \pi^{2} \mathrm{~m}$. If $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$, the value of time period is:
(1) 4 sec
(2) 8 sec
(3) 2 sec
(4) 3 sec

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.
Q. 26 The length of a simple pendulum is increased four times of its initial value, its time period with respect to its previous value will:
(1) Become twice
(2) Not be different
(3) Be halved
(4) Be $\sqrt{2}$ times
Q. 27 Water is filled in a hollow metallic sphere and it is suspended from a long string. A fine hole is made at the bottom of the sphere through which water tickles. The sphere is set into oscillations. Its period of oscillation will:
(1) Remain constant
(2) Decrease continuously
(3) Increase continuously
(4) First increase then decrease
Q. 28 The time taken for a second pendulum from one extreme point to another is:
(1) 1 sec .
(2) 2 sec .
(3) $1 / 2 \mathrm{sec}$.
(4) 4 sec .
Q. 29 The length of a seconds pendulum is (approximately):
(1) 1 m
(2) 1 cm
(3) 2 m
(4) 2 cm
Q. 30 The acceleration due to gravity at height R above the surface of the earth is $g / 4$. The periodic time of a simple pendulum in an artificial satellite at this height will be:
(1) $\mathrm{T}=2 \pi \sqrt{2 \ell / \mathrm{g}}$
(2) $\mathrm{T}=2 \pi \sqrt{\ell / 2 \mathrm{~g}}$
(3) Zero
(4) Infinity

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	3	4	1	3	2	4	4	2	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	4	1	2	2	1	2	1	2	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	1	3	1	1	4	1	1	4

