

Daily Practice Problems

NEET PHYSICS

Topic: Newton's Law of Motion and Friction

Q.1	The Newton's laws of	motion are valid in-				
	(1) inertial frames					
	(2) non-inertial frame	S				
	(3) rotating frames					
	(4) accelerated frames					
Q.2	The incorrect stateme	nt about Newton's secon	d law of motion is-			
	(1) it provides a measu	ure of inertia	(2) it provides a measu	ire of force		
	(3) it relates force and	acceleration	(4) it relates momentum and force			
Q.3	Newton's third law is e	equivalent to the-				
	(1) law of conservation	n of linear momentum	(2) law of conservation	n of angular momentum		
	(3) law of conservation of energy					
	(4) law of conservation	n of energy and mass				
Q.4	Ratio of intertial mass	to gravitational mass is-				
	(1) 1 : 2	(2) 1 : 1	(3) 2 : 1	(4) No fixed number		
Q.5	A man getting down a	running bus, falls forward	d because-			
	(1) due to inertia of rest, road is left behind and man reaches forward					
	(2) due to inertia of	f motion upper part of bo	dy continues to be in moti	on in forward direction while feet come to		
	rest as soon as they	y touch the road				
	(3) he leans forwar	rd as a matter of habbit				
	(4) of the combined	d effect of all the three fac	ctors stated in (1), (2) and	(3)		
Q.6	When we jump out a b	oat standing in water it n	10ves-			
	(1) forward	(2) backward	(3) side ways	(4) none of these		

www.aggarwaleducare.com

Q.7 You are on a friction less horizontal plane. How can you get off if no horizontal force is exerted by pushing against the surface ?

(2) second law of motion

(1) by jumping

- (2) by spitting or sneezing
- (3) by rolling your body on the surface
- (4) by running on the plane

Q.8 Swimming is possible on account of -

- (1) first law of motion
- (3) third law of motion (4) Newton's law of gravitation
- Q.9 The incorrect relation is-

(1)
$$F = ma$$
 (2) $F = r$

- (3) $F = \frac{dp}{dt}$ (4) F = mv
- Q.10 A heavy block of mass m is supported by a cord C from the ceiling, and another cord D is attached to the bottom of the block. If a sudden jerk is given to D, then-

 $\frac{dv}{dt}$

(1) cord C breaks

(3) cord C and D both break

(2) cord D breaks

(4) none of the cords breaks

Q.11 A person says that he measured the acceleration of a particle to be non-zero while no force was acting on the particle-

- (1) He is a lier
- (2) His clock might have run slow
- (3) His meter scale might have been longer than the standard
- (4) He might have non-inertial frame

Q.12 When a 1 Newton force acts on a 1 kg body that is able to move freely, the body receives-

(1) A speed of 1 m/sec

- (2) An acceleration of 1 m/sec^2
- (3) An acceleration of 980 $\rm cm/sec^2$
- (4) An acceleration of 1 cm/sec^2

www.aggarwaleducare.com

- Q.13 A force of 10 Newton acts on a body of mass 20 kg for 10 seconds. The change produced in momentum is given by-
 - (1) 5 kg m/sec (2) 100 kg m/sec
 - (3) 200 kg m/sec (4) 2000 kg m/sec
- **Q.14** A force-time graph for a linear motion is shown in figure where the segments are circular. The linear momentum gained between zero and 8 seconds in -

(1) - 2p N.s
(2) 0 N.s
(3) 4p N.s
(4) - 6 p N.s

Q.15 A particle moves in the xy plane under the action of a force **F** such that the value of its linear momentum (**P**) at any time t is, $P_x = 2 \operatorname{cost}$, $P_v = 2 \operatorname{sint}$. The angle q between **P** and **F** at that time t will be -

(1) 0º	(2) 30º	
(3) 90º	(4) 180º	

Q.16 A player catches a ball of 200 g moving with a speed of 20 m/s. If the time taken to complete the catch is 0.5 sec, the force exerted on the players hand is -

(1) 8 N	(2) 4 N
(3) 2 N	(4) 0 N

Q.17 Blocks are in contact on a frictionless table. A horizontal force F = 3N is applied to one block as shown. The force exerted by the smaller block m_2 on block m_1 is-

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

Q.18 Three block are connected as shown, on a horizontal frictionless table and pulled to the right with a force $T_3 = 60$ N. If $m_1 = 10$ kg, $m_2 = 20$ kg and $m_3 = 30$ kg, the tension T_2 is-

Q.19 Two masses are hanging vertically over frictionless pulley. The acceleration of the two masses is-

(1)
$$\frac{m_1}{m_2}g$$
 (2) $\frac{m_2}{m_1}g$ (3) $\left(\frac{m_2-m_1}{m_1+m_2}\right)g$ (4) $\left(\frac{m_1+m_2}{m_2-m_1}\right)g$

Q.20 Two bodies of 5 kg and 4 kg are tied to a string as shown in the figure. If the table and pulley both are smooth, acceleration of 5 kg body will be equal to- $\frac{4kg}{T}$

Q.21 Three equal weights A, B, C of mass 2 kg each are hanging on a string passing over a fixed frictionless pulley as shown in the fig. The tension in the string connecting weights B and C is-

www.aggarwaleducare.com

Q.22 Two bodies of mass 0.3 kg and 0.4 kg are tied to the ends of a weightless string which passes over a smooth pulley as shown in the figure. The tension in the string is-

(1) 3.06 Newton

(1) 2 mg

(3) 4.05 Newton

(4) 3.0 Newton

Q.23 A block of mass $m_1 = 2$ kg on a smooth inclined plane at angle 30° is connected to a second block of mass $m_2 = 3$ kg by a cord passing over a frictionless pulley as shown in figure. The acceleration of each block is-(Assume g = 10 m/sec²)

Q.24 A body floats in liquid contained in a beaker. If the whole system as shown in figure falls under gravity then the upthrust on the body is-

(4) less than mg

Q.25 Two blocks are connected by a cord passing over a small frictionless pulley and resting on frictionless planes as shown in the figure The accleration of the blocks is-

www.aggarwaleducare.com

- **Q.26** A thief stole a box full of valuable articles of weight W and while carrying it on his back, he jumped down a wall of height h from the ground. Before he reached the ground, he experienced a load of
 - (1) 2W (2) W (3) W/2 (4) zero
- **Q.27** In given figure find out the acceleration of any of the particle-

Q.28 In the figure a smooth pulley of negligible weight is suspended by a spring balance. Weights of 1kg and 5 kg are attached to the opposite ends of a string passing over the pulley and move with acceleration because of gravity. During the motion, the spring balance reads a weight of -

(1) 6 kg

(3) more than 6 kg

(2) less than 6 kg(4) may be more or less than 6 kg

Q.29 A block D weighing 300 kg is suspended by means of two cords A and B as shown in the figure. W is a vertical wall and R a horizontal rigid beam. The tension in the string A in kg is-

Q.30 Two weights of 15 kg each are attached by means of two strings to the two ends of a spring balance, as shown in the diagram. The pulleys are frictionless. The reading of the balance would be-

(1) zero

(2) 15 kg

(4) 75 kg

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	1	1	2	2	2	2	3	4	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	2	2	2	3	1	1	3	3	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	2	2	2	4	4	1	2	3	2

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.