Topic: Vector

TM

Q.1 For the figure -

(1)
$$\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}$$

(1)
$$\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}$$
 (2) $\overrightarrow{B} + \overrightarrow{C} = \overrightarrow{A}$

(3)
$$\overrightarrow{C} + \overrightarrow{A} = \overrightarrow{B}$$

(4)
$$\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = 0$$

Q.2 Two forces of 4 dyne and 3 dyne act upon a body. The resultant force on the body can only be -

- (1) more than 3 dynes
- (2) more than 4 dynes
- (3) between 3 and 4 dynes
- (4) between 1 and 7 dynes

Q.3 A force of 6 kg and another of 8 kg can be applied together to produce the effect of a single force of-

- (1) 1kg
- (2) 11kg
- (3) 15 kg (4) 20 kg

Q.4 Which of the sets given below may represent the magnitudes of three vectors adding to zero?

- (1) 2, 4, 8
- (2) 4, 8, 16
- (3) 1, 2, 1
- (4) 0.5, 1, 2

Q.5 Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is -

- (i) 1 unit
- (ii) 5 unit
- (iii) 7 unit

- (1) 180°, 90°, 0°
- (2) 80°, 70°, 0°
- (3) 90°, 170°, 50°
- (4) None of these

Q.6	A blind person after walking 10 steps in one direction, each of length 80 cm, turns randomly to the left or to the right by 90°. After walking a total of 40 steps the maximum possible displacement of the person from his starting position could be -								
	(1) 320 m	(2) 32 m							
	(3) 16/ $\sqrt{2}$ m	(4) 16 $\sqrt{2}$ m							
Q.7	If the angle between vector \vec{a} and \vec{b} is an acute angle, then the difference $\vec{a} - \vec{b}$ is -								
	(1) the main diagonal of the parallelogram								
	(2) the minor diagonal of the parallelogram								
	(3) any of the above		(4) none of t	the above					
Q.8	What is the resultant of three coplanar forces: 300 N at 0°, 400 N at 30° and 400 N at 150°?								
	(1) 500 N	(2) 700 N	(3) 1100N	(4) 300 N					
Q.9	Two forces, F_1 and F_2 are acting on a body. One force is double that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is -								
	(1) cos ⁻¹ (1/2)	(2) cos ⁻¹ (-1/2)							
	(3) cos ⁻¹ (-1/4)	(4) cos ⁻¹ (1/4)							
Q.10	If the magnitudes of the vectors \vec{A} , \vec{B} and \vec{C} are 6, 8, 10 units respectively and if \vec{A} + \vec{B} = \vec{C} , then the angle								
	between $\overset{ ightharpoonup}{A}$ and $\overset{ ightharpoonup}{C}$ is -								
	(1) π/2								
	(2) arc cos (0. 6)								
	(3) arc tan (0.75)								
	(4) π/4								
Q.11	Angle between $(\overrightarrow{P} + \overrightarrow{Q})$ and $(\overrightarrow{P} - \overrightarrow{Q})$ will be-								
	(1) 0º only								
	(2) 90º only								
	(3) 180º only								
	(4) between 0º and 180º (both the values inclusive)								

- Q.12 A particle is moving in a circle of radius r centre at O with constant speed v the change in velocity moving from A to B (\angle AOB = 40 $^{\circ}$) is -
 - (1) 2v cos 40º
- (2) 2v sin 40º
- (3) 2v cos 20º
- (4) 2v sin 20º
- The three vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} have the same magnitude R. Then the sum of these vectors have Q.13 magnitude -

- (2) $\sqrt{2}$ R (3) 3R (4) (1+ $\sqrt{2}$)R (1) R
- What displacement must be added to the displacement 25 \hat{i} 6 \hat{j} m to give a displacement of 7.0 m pointing in Q.14 the x-direction?

 - (1) $18\hat{i} 6\hat{j}$ (2) $32\hat{i} 13\hat{j}$

 - (3) $-18\hat{i} + 6\hat{j}$ (4) $-25\hat{i} + 13\hat{j}$
- Two constant forces \vec{F}_1 = $2\hat{i} 3\hat{j} + 3\hat{k}$ (N) and \vec{F}_2 = $\hat{i} + \hat{j} 2\hat{k}$ (N) act on a body and displace it from the Q.15 position $\vec{r_l}$ = \hat{i} + 2 \hat{j} - 2 \hat{k} (m) to the position $\vec{r_2}$ = 7 \hat{i} + 10 \hat{j} + 5 \hat{k} (m). What is the work done ?
 - (1) 9 Joule
- (2) 41 Joule
- (3) -3 Joule
- (4) None of these
- Two vectors \vec{A} and \vec{B} lie in X-Y plane. The vector B is perpendicular to vector \vec{A} . If $\vec{A} = \hat{i} + \hat{j}$, then \vec{B} Q.16 may be -

 - (1) $\hat{i} \hat{j}$ (2) $-\hat{i} + \hat{j}$

 - (3) $-2\hat{i} + 2\hat{j}$ (4) Any of the above

Q.17 The two vectors $\vec{A} = 2\hat{i} + \hat{j} + 3\hat{k}$ and

$$\vec{B} = 7\hat{i} - 5\hat{j} - 3\hat{k}$$
 are -

- (1) parallel
- (2) perpendicular
- (3) anti-parallel
- (4) none of these
- **Q.18** Two vectors $\overrightarrow{P} = 2\hat{i} + b\hat{j} + 2\hat{k}$ and $\overrightarrow{Q} = \hat{i} + \hat{j} + \hat{k}$

will be perpendicular if -

(1) b = 0

(2) b = 1

(3) b = 2

- (4) b = -4
- Q.19 A vector perpendicular to $(4\hat{i}-3\hat{j})$ is
 - **(1)** $4\hat{i} + 3\hat{j}$
- **(2)** 7k̂
- **(3)** 6î
- **(4)** $3\hat{i} 4\hat{j}$
- Q.20 Angle that the vector $\overrightarrow{A} = 2 \hat{i} + 3 \hat{j}$ makes with y-axis is -
 - (1) tan⁻¹ 3/2
- (2) tan⁻¹ 2/3
- (3) sin⁻¹ 2/3
- $(4) \cos^{-1} 3/2$
- Q.21 A vector \overrightarrow{A} points. vertically upward and, \overrightarrow{B} points towards north. The vector product $\overrightarrow{A} \times \overrightarrow{B}$ is-
 - (1) along west
 - (2) along east
 - (3) zero
 - (4) vertically downward
- Q.22 The linear velocity of a rotating body is given by $\vec{v} = \vec{\omega} \times \vec{r}$, where $\vec{\omega}$ is the angular velocity and \vec{r} is the radius vector. The angular velocity of a body $\vec{\omega} = \hat{i} 2\hat{j} + 2\hat{k}$ and their radius vector $\vec{r} = 4\hat{j} 3\hat{k}$, |v| is -
 - (1) $\sqrt{29}$ units
- (2) 31 units
- (3) $\sqrt{37}$ units
- **(4)** $\sqrt{41}$ units

- $\mathbf{0.4}\,\hat{\mathbf{i}}\,$ + $\mathbf{0.8}\,\hat{\mathbf{j}}\,$ + $\mathbf{c}\,\hat{\mathbf{k}}\,$ represents a unit vector, when c is -Q.23
 - (1) 0.2
- (2) $\sqrt{0.2}$
- (3) $\sqrt{0.8}$
- (4) 0
- A vector is not changed if -Q.24
 - (1) It is rotated through an arbitrary angle
 - (2) It is multiplied by an arbitrary scale
 - (3) It is cross multiplied by a unit vector
 - (4) It is a slide parallel to itself
- Q.25 The component of a vector is -
 - (1) always less than its magnitude
 - (2) always greater than its magnitude
 - (3) always equal to its magnitude
 - (4) none of these
- If \vec{A} = \vec{B} + \vec{C} and the magnitudes \vec{A}, \vec{B} and \vec{C} are 5, 4 and 3 units, the angle between Q.26 \vec{A} and \vec{C} is-
 - (1) $\cos^{-1}\left(\frac{3}{5}\right)$ (2) $\cos^{-1}\left(\frac{4}{5}\right)$

 - (3) $\frac{\pi}{2}$ (4) $\sin^{-1}\left(\frac{3}{4}\right)$
- The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B} , then -Q.27
 - (1) $\alpha < \beta$
 - (2) $\alpha < \beta$ if A < B
 - (3) $\alpha < \beta$ if A > B
 - (4) $\alpha < \beta$ if A = B

Q.28	I started walking down a road to day-break facing the sun. After walking for some-time, I turned to my left, then I turned to the right once again. In which direction was I going then?							
	(1) East	(2) N	(2) North-west					
	(3) North-east	(4) South						
Q.29	Minimum number of unequal forces whose vector sum can equal to zero is -							
	(1) two	(2) three						
	(3) four	(4) any						
Q.30	How many minimum number of vectors in different planes can be added to give zero resultant?							
	(1) 2	(2) 3						
	(3) 4	(4) 5						

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	4	2	3	1	4	2	1	3	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	4	4	3	1	4	2	4	3	2
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	2	4	1	1	3	1	2	3