Daily Practice Problems

NEET PHYSICS

Topic: Vector
Q. 1 For the figure -

(1) $\vec{A}+\vec{B}=\vec{C}$
(2) $\vec{B}+\vec{C}=\vec{A}$
(3) $\vec{C}+\vec{A}=\vec{B}$
(4) $\vec{A}+\vec{B}+\vec{C}=0$
Q. 2 Two forces of 4 dyne and 3 dyne act upon a body. The resultant force on the body can only be -
(1) more than 3 dynes
(2) more than 4 dynes
(3) between 3 and 4 dynes
(4) between 1 and 7 dynes
Q. 3 A force of 6 kg and another of 8 kg can be applied together to produce the effect of a single force of-
(1) 1 kg
(2) 11 kg
(3) 15 kg
(4) 20 kg
Q. 4 Which of the sets given below may represent the magnitudes of three vectors adding to zero ?
(1) $2,4,8$
(2) $4,8,16$
(3) 1, 2, 1
(4) $0.5,1,2$
Q. 5 Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is -
(i) 1 unit
(ii) 5 unit
(iii) 7 unit
(1) $180 \circ, 90 \circ, 0$ 응
(2) $800,70 \%, 00$
(3) $90 \%, 170 \%, 50 \%$
(4) None of these
Q. 6 A blind person after walking 10 steps in one direction, each of length $\mathbf{8 0} \mathbf{c m}$, turns randomly to the left or to the right by 90 . After walking a total of 40 steps the maximum possible displacement of the person from his starting position could be -
(1) 320 m
(2) 32 m
(3) $16 / \sqrt{2} \mathrm{~m}$
(4) $16 \sqrt{2} \mathrm{~m}$
Q. 7 If the angle between vector \vec{a} and \vec{b} is an acute angle, then the difference $\vec{a}-\vec{b}$ is -
(1) the main diagonal of the parallelogram
(2) the minor diagonal of the parallelogram
(3) any of the above
(4) none of the above
Q. 8 What is the resultant of three coplanar forces: $\mathbf{3 0 0} \mathrm{N}$ at $\mathbf{0}^{\circ}, \mathbf{4 0 0} \mathrm{N}$ at $\mathbf{3 0} 0$ and $\mathbf{4 0 0} \mathrm{N}$ at $\mathbf{1 5 0}$?
(1) 500 N
(2) 700 N
(3) 1100 N
(4) 300 N
Q. 9 Two forces, F_{1} and F_{2} are acting on a body. One force is double that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is -
(1) $\cos ^{-1}(1 / 2)$
(2) $\cos ^{-1}(-1 / 2)$
(3) $\cos ^{-1}(-1 / 4)$
(4) $\cos ^{-1}(1 / 4)$
Q. 10 If the magnitudes of the vectors \vec{A}, \vec{B} and \vec{C} are $6,8,10$ units respectively and if $\vec{A}+\vec{B}=\vec{C}$, then the angle between \vec{A} and \vec{C} is -
(1) $\pi / 2$
(2) $\operatorname{arc} \cos (0.6)$
(3) arctan (0.75)
(4) $\pi / 4$
Q. 11 Angle between $(\vec{P}+\vec{Q})$ and $(\vec{P}-\vec{Q})$ will be-
(1) 0o only
(2) 90only
(3) $\mathbf{1 8 0 \%}$ only
(4) between 00 and 1800 (both the values inclusive)

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.
Q. 12 A particle is moving in a circle of radius r centre at O with constant speed v the change in velocity moving from A to $B(\angle A O B=40 \circ)$ is -
(1) $2 v \cos 40^{\circ}$
(2) $2 v \sin 40^{\circ}$
(3) $2 v \cos 200$
(4) $2 v \sin 200$
Q. 13 The three vectors $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}$ and $\overrightarrow{\mathrm{OC}}$ have the same magnitude R. Then the sum of these vectors have magnitude -

(1) R
(2) $\sqrt{2} \mathbf{R}$
(3) $3 R \quad$ (4) $(1+\sqrt{2}) R$
Q. 14 What displacement must be added to the displacement $25 \hat{i}-6 \hat{j} \mathbf{m}$ to give a displacement of $7.0 \mathbf{m}$ pointing in the x-direction ?
(1) $18 \hat{i}-6 \hat{j}$
(2) $32 \hat{i}-13 \hat{j}$
(3) $-18 \hat{i}+6 \hat{j}$
(4) $-25 \hat{i}+13 \hat{j}$
Q. 15 Two constant forces $\vec{F}_{1}=2 \hat{i}-3 \hat{j}+3 \hat{k}(N)$ and $\vec{F}_{2}=\hat{i}+\hat{j}-2 \hat{k}$ (N) act on a body and displace it from the position $\vec{r}_{1}=\hat{i}+2 \hat{j}-2 \hat{k}(m)$ to the position $\vec{r}_{2}=7 \hat{i}+10 \hat{j}+5 \hat{k}(m)$. What is the work done?
(1) 9 Joule
(2) 41 Joule
(3) - 3 Joule
(4) None of these
Q. 16 Two vectors \vec{A} and \vec{B} lie in $X-Y$ plane. The vector B is perpendicular to vector $\vec{A} \cdot$ If $\quad \vec{A}=\hat{i}+\hat{j}$, then \vec{B} may be -
(1) $\hat{i}-\hat{j}$
(2) $-\hat{i}+\hat{j}$
(3) $-2 \hat{i}+2 \hat{j}$
(4) Any of the above
Q. 17 The two vectors $\vec{A}=2 \hat{i}+\hat{j}+3 \hat{k}$ and
$\vec{B}=7 \hat{i}-5 \hat{j}-3 \hat{k}$ are -
(1) parallel
(2) perpendicular
(3) anti-parallel
(4) none of these
Q. 18 Two vectors $\vec{P}=2 \hat{i}+b \hat{j}+2 \hat{k}$ and $\vec{Q}=\hat{i}+\hat{j}+\hat{k}$ will be perpendicular if -
(1) $b=0$
(2) $b=1$
(3) $b=2$
(4) $b=-4$
Q. 19 A vector perpendicular to $(4 \hat{i}-3 \hat{j})$ is -
(1) $4 \hat{i}+3 \hat{j}$
(2) $7 \hat{\mathrm{k}}$
(3) $6 \hat{\mathrm{i}}$
(4) $3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}$
Q. 20 Angle that the vector $\vec{A}=2 \hat{i}+3 \hat{j}$ makes with y-axis is -
(1) $\tan ^{-1} 3 / 2$
(2) $\tan ^{-1} 2 / 3$
(3) $\sin ^{-1} 2 / 3$
(4) $\cos ^{-1} 3 / 2$
Q. 21 A vector \vec{A} points. vertically upward and, \vec{B} points towards north. The vector product $\vec{A} \times \vec{B}$ is-
(1) along west
(2) along east
(3) zero
(4) vertically downward
Q. 22 The linear velocity of a rotating body is given by $\vec{v}=\vec{\omega} \times \vec{r}$, where $\vec{\omega}$ is the angular velocity and \vec{r} is the radius vector. The angular velocity of a body $\vec{\omega}=\hat{i}-2 \hat{j}+2 \hat{k}$ and their radius vector $\vec{r}=4 \hat{j}-3 \hat{k},|v|$ is -
(1) $\sqrt{29}$ units
(2) 31 units
(3) $\sqrt{37}$ units
(4) $\sqrt{41}$ units
Q. $23 \quad 0.4 \hat{i}+0.8 \hat{j}+c \hat{k}$ represents a unit vector, when c is -
(1) 0.2
(2) $\sqrt{0.2}$
(3) $\sqrt{0.8}$
(4) 0
Q. 24 A vector is not changed if -
(1) It is rotated through an arbitrary angle
(2) It is multiplied by an arbitrary scale
(3) It is cross multiplied by a unit vector
(4) It is a slide parallel to itself
Q. 25 The component of a vector is -
(1) always less than its magnitude
(2) always greater than its magnitude
(3) always equal to its magnitude
(4) none of these
Q. 26 If $\vec{A}=\vec{B}+\vec{C}$ and the magnitudes \vec{A}, \vec{B} and \vec{C} are 5, 4 and 3 units, the angle between \vec{A} and \vec{C} is-
(1) $\cos ^{-1}\left(\frac{3}{5}\right)$
(2) $\cos ^{-1}\left(\frac{4}{5}\right)$
(3) $\frac{\pi}{2}$
(4) $\sin ^{-1}\left(\frac{3}{4}\right)$
Q. 27 The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β with \vec{B}, then -
(1) $\alpha<\beta$
(2) $\alpha<\beta$ if $A<B$
(3) $\alpha<\beta$ if $A>B$
(4) $\alpha<\beta$ if $A=B$
Q. 28 I started walking down a road to day-break facing the sun. After walking for some-time, I turned to my left, then I turned to the right once again. In which direction was I going then ?
(1) East
(2) North-west
(3) North-east
(4) South
Q. 29 Minimum number of unequal forces whose vector sum can equal to zero is -
(1) two
(2) three
(3) four
(4) any
Q. 30 How many minimum number of vectors in different planes can be added to give zero resultant ?
(1) 2
(2) 3
(3) 4
(4) 5

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	4	2	3	1	4	2	1	3	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	4	4	3	1	4	2	4	3	2
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	2	4	1	1	3	1	2	3

