## Daily Practice Problems

## NEET CHEMISTRY

Topic: Redox
Q. 1 The oxidation number of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is -
$(1)+3$
(2) +2
(3) +1
(4) -1
Q. 2 Which one of the following statement is not correct ?
(1) Oxidation state of S in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is + 6
(2) Oxidation number of Os in $\mathrm{OsO}_{4}$ is + 8
(3) Oxidation state of S in $\mathrm{H}_{2} \mathrm{SO}_{5}$ is + 8
(4) Oxidation number of O in $\mathrm{KO}_{2}$ is $-\frac{1}{2}$
Q. 3 Which of the following shows highest oxidation number in combined state :
(1) Os
(2) Ru
(3) Both (1) and (2)
(4) None
Q. 4 The oxidation state of S in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ is -
(1) +2.5
(2) +2 and +3 (two S have +2 and other two have +3 )
(3) +2 and +3 (three $S$ have +2 and one $S$ has +3 )
(4) +5 and 0 (two $S$ have +5 and the other two $S$ have 0 )
Q. 5 Oxidation number of Fe in $\mathrm{Fe}_{0.94} \mathrm{O}$ is -
(1) 200
(2) 200/94
(3) 94/200
(4) None
Q. 6 Oxidation number of carbon in carbon suboxide $\left(\mathrm{C}_{3} \mathrm{O}_{2}\right)$ is -
(1) $\frac{+2}{3}$
(2) $\frac{+4}{3}$
(3) +4
(4) $\frac{-4}{3}$
Q. 7 Oxidation number of central sulphur atom in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ would be -
(1) +6
(2) +2
(3) -2
(4) 0
Q. 8 The oxidation state of molybdenum in its complex, $\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$ is-
(1) +2
(2) +3
(3) +4
(4) +5
Q. 9 Compounds

## O.N.

(a) $\mathrm{KMn}{ }^{*} \mathrm{O}_{4}$
(i) +4
(b) $\mathrm{Ni}^{*}(\mathrm{CO})_{4}$
(ii) +7
(c) $\left[\mathrm{Pt}^{*}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2}$
(iii) 0
(d) $\mathrm{Na}_{2} \mathrm{O}_{2}{ }^{*}$
(iv) -1

The correct code for the O.N. of astersked atom would be :

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| (1) | i | ii | iii | iv |
| (2) | iv | iii | ii | i |
| (3) | ii | iii | i | iv |
| (4) | iv | i | ii | iii |

Q. 10 When P reacts with caustic soda, the products are $\mathrm{PH}_{3}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{2}$. The reaction is an example of -
(1) Oxidation
(2) Reduction
(3) Both oxidation and reduction
(4) Neutralisation
Q. 11 In the brown ring complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}^{+}\right] \mathrm{SO}_{4}$, the oxidation number of Fe is -
(1) +1
(2) +2
(3) +3
(4) +4
Q. 12 Compound $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ is a super conductor. The O .N. of the copper in the compound will be: [ O . No. of $\mathrm{Y}=+3$ ]
(1) $+7 / 3$
(2) zero
(3) +2
(4) +1
Q. 13 Which of the following is not a redox change ?
(1) $\mathbf{2 H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}+\mathbf{3 S}$
(2) $2 \mathrm{BaO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{BaO}_{2}$
(3) $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
(4) $\mathbf{2} \mathrm{KClO}_{3} \rightarrow \mathbf{2 K C l}+3 \mathrm{O}_{2}$
Q. 14 Which of the following example does not represent disproptionation -
(1) $\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(2) $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } + \mathrm { O } _ { 2 } , ~}$
(3) $4 \mathrm{KClO}_{3} \rightarrow 3 \mathrm{KClO}_{4}+\mathrm{KCl}$
(4) $3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
Q. 15 The decomposition of $\mathrm{KClO}_{3}$ to KCl and $\mathrm{O}_{2}$ on heating is an example of :
(1) Intermolecular redox change
(2) Intramolecular redox change
(3) Disproportionation or auto redox change
(4) None
Q. 16 Which of the following change represents a disproportionation reaction (s) :
(1) $\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$
(3) $2 \mathrm{HCuCl}_{2} \xrightarrow[\text { Water }]{\text { dilutionwith }} \mathrm{Cu}+\mathrm{Cu}^{+2}+4 \mathrm{Cl}^{-}+2 \mathrm{H}^{+} \quad$ (4) All of the above
Q. 17 One mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ loses 10 mole of electrons to form a new compound $Y$. Assuming that all nitrogen appear in the new compound, what is oxidation state of nitrogen ? (there is no change in the oxidation state of hydrogen)
(1) -1
(2) -3
(3) +3
$(4)+5$
Q. 18 How many electrons should $\mathrm{X}_{2} \mathrm{H}_{4}$ liberate so that in the new compound x shows oxidation number of $-1 / 2$ [E.N. $x>H$ ] -
(1) 10
(2) 4
(3) 3
(4) 2
Q. 19 Reaction (A) S ${ }^{-2}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathbf{2 H C l}+\mathrm{O}_{2}$

The true statement regarding the above reactions is :
(1) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as reductant in both the reactions
(2) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as oxidant in reaction (A) and reductant in reaction (B).
(3) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as an oxidant in both the reactions
(4) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as reductant in reaction (A) and oxidant in reaction (B).

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.
Q. 20 A compound contains atoms $A, B$ and $C$. The oxidation number of $A$ is +2 , of $B$ is +5 and of $C$ is -2 . The possible formula of the compound is :
(1) $\mathrm{ABC}_{2}$
(2) $\mathrm{B}_{2}\left(\mathrm{AC}_{3}\right)_{2}$
(3) $A_{3}\left(B C_{4}\right)_{2}$
(4) $A_{3}\left(B_{4} C\right)_{2}$
Q. 21 In the reaction, $\mathrm{VO}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{FeO}+\mathrm{V}_{2} \mathrm{O}_{5}$, the eq. wt. of $\mathrm{V}_{2} \mathrm{O}_{5}$ is equal to its -
(1) Mol. wt.
(2) Mol. wt./8
(3) Mol. wt./6
(4) None of these
Q. 22 Molecular weight of $\mathrm{KBrO}_{3}$ is M . What is its equivalent weight, if the reaction is $\mathrm{BrO}_{3}{ }^{-} \rightarrow \mathrm{Br}^{-}$(acidic medium)
(1) $M$
(2) $M / 4$
(3) $M / 6$
(4) 6 M
Q. 23 In the reaction : $A^{-n_{2}}+x^{-} \rightarrow A^{-n_{1}}$, here $x$ will be -
(1) $n_{1}+n_{2}$
(2) $n_{2}-n_{1}$
(3) $n_{1}-n_{2}$
(4) $n_{1} \cdot n_{2}$
Q. 24 Equivalent weight of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in the change : $\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}$ is -
(1) $M / 3$
(2) $M / 6$
(3) $M / 6$
(4) $M / 1$
Q. 25 The number of mole of oxalate ions oxidised by one mole of $\mathrm{MnO}_{4}^{-}$is :
(1) $1 / 5$
(2) $2 / 5$
(3) $5 / 2$
(4) 5
Q. 26 In a reaction 4 mole of electrons are transferred to one mole of $\mathrm{HNO}_{3}$ when it acts as an oxidant. The possible reduction product is :
(1) (1/2) $\mathrm{mol} \mathrm{N}_{2}$
(2) (1/2) mole $\mathrm{N}_{2} \mathrm{O}$
(3) $1 \mathbf{~ m o l}$ of $\mathrm{NO}_{2}$
(4) 1 mole $\mathrm{NH}_{3}$
Q. $27 \quad 2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{~S}+6 \mathrm{H}^{+} \rightarrow \mathbf{2} \mathrm{Mn}^{2+}+2 \mathrm{~K}^{+}+5 \mathrm{~S}+8 \mathrm{H}_{2} \mathrm{O}$

In the above reaction, how many electrons would be involved in the oxidation of 1 mole of reductant?
(1) 2
(2) 5
(3) 10
(4) 1
Q. 28 Select the example of disproportionation reaction -
(1) $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$
(2) $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $4 \mathrm{H}_{3} \mathrm{PO}_{3} \rightarrow \mathrm{PH}_{3}+3 \mathrm{H}_{3} \mathrm{PO}_{4}$
(4) $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}$
Q. 29 The oxidation state of +1 for phosphorous is found in :
(1) Phosphorous acid
(2) Orthophosphoric acid
(3) Hypo phosphorous acid
(4) Hypo phosphoric acid
Q. 30 In the balanced equation
$\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, the moles of $\mathrm{CO}_{2}$ formed are -
(1) 2
(2) 4
(3) 5
(4) 10

## ANSWER KEY

| Que. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ans. | 3 | 3 | 3 | 4 | 2 | 2 | 1 | 2 | 3 | 3 |
| Que. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Ans. | 1 | 1 | 3 | 1 | 2 | 4 | 3 | 3 | 2 | 3 |
| Que. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Ans. | 3 | 3 | 3 | 1 | 3 | 2 | 1 | 3 | 3 | 4 |

