TM

Daily Practice Problems

NEET CHEMISTRY

Topic: Redox

- Q.1 The oxidation number of phosphorus in Ba(H₂PO₂)₂ is -
 - (1) + 3
- (2) + 2
- (3) + 1
- (4) 1
- Q.2 Which one of the following statement is not correct?
 - (1) Oxidation state of S in $(NH_4)_2S_2O_8$ is + 6
 - (2) Oxidation number of Os in OsO₄ is + 8
 - (3) Oxidation state of S in H₂SO₅ is + 8
 - (4) Oxidation number of O in KO₂ is $-\frac{1}{2}$
- Which of the following shows highest oxidation number in combined state: Q.3
 - (1) Os
- (2) Ru
- (3) Both (1) and (2) (4) None
- The oxidation state of S in Na₂S₄O₆ is -Q.4
 - (1) + 2.5
 - (2) + 2 and + 3 (two S have + 2 and other two have + 3)
 - (3) + 2 and + 3 (three S have + 2 and one S has + 3)
 - (4) + 5 and 0 (two S have + 5 and the other two S have 0)
- Q.5 Oxidation number of Fe in Fe_{0.94} O is -
 - (1)200
- (2) 200/94
- (3) 94/200
- (4) None
- Oxidation number of carbon in carbon suboxide (C₃O₂) is -**Q.6**
 - (1) $\frac{+2}{3}$
- (2) $\frac{+4}{3}$
- (3) + 4
- (4) $\frac{-4}{3}$

Q.7	Oxidation number of central sulphur atom in Na ₂ S ₂ O ₃ would be -										
	(1) +	- 6	(2) + 2	2	(3) – 2	(4) 0					
Q.8	The oxidation state of molybdenum in its complex, $[Mo_2O_4(C_2H_4)_2(H_2O)_2]^{2-}$ is-										
	(1) +	- 2	(2) + 3	3	(3) + 4	(4) +5					
Q.9	Compounds				(O.N.					
	(a) KMn*O₄				(i) + 4						
	(b) Ni*(CO) ₄				(ii) +7						
	(c)[Pt*(NH ₃) ₂ Cl ₂]Cl ₂]Cl ₂							
	(d) Na ₂ O ₂ *				(iv) – 1						
	The correct code for					stersked atom w	ould be :				
		Α	В	С	D						
	(1)	i	ii	iii	iv						
	(2)	iv	iii	ii	i						
	(3)	ii	iii	i	iv						
	(4)	iv	i	ii	iii						
Q.10	Whe	When P reacts with caustic soda, the products are PH₃ and NaH₂PO₂. The reaction is an example of -									
	(1) (Oxida	tion								
		(2) Reduction									
				n ar	nd reduction						
		(3) Both oxidation and reduction (4) Neutralisation									
	(4) recutalisation										
Q.11	In th	In the brown ring complex [Fe(H₂O)₅NO⁺]SO₄, the oxidation number of Fe is –									
	4-3		.A	_							
	(1) +	1	(2) + 2	2	(3) + 3	(4) + 4					
Q.12	Compound YBa ₂ Cu ₃ O ₇ is a super conductor. The O.N. of the copper in the compound will be : [O. No. of Y = + 3]										
	(1) +	7/3			(2) zero						
	(3) +	- 2			(4) + 1						
Q.13	Which of the following is not a redox change ?										
	(1) 2	2H₂S +	$SO_2 \rightarrow$	2H ₂	2O + 3S						
	(2) 2	2BaO	+ O ₂ →	2Ba	O ₂						
	(3) E	3aO₂ -	+ H₂SO₄								
			₃ → 2K0								
	. , -				-						

0.14	Which of the fellowing evenue does not represent disquestionation									
Q.14	Which of the following example does not represent disproptionation - (1) $MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$									
	(2) $2H_2O_2 \rightarrow 2H_2O + O_2$									
	$(3) 4KCIO3 \rightarrow 3KCIO4 + KCI$									
	(4) $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$									
Q.15	The decomposition of $KClO_3$ to KCl and O_2 on heating is an example of :									
	(1) Intermolecular redox change									
	(2) Intramolecular redox change									
	(3) Disproportionation or auto redox change									
	(4) None									
Q.16	Which of the following change represents a disproportionation reaction (s):									
	$(1)Cl_2 + 2OH^- \rightarrow CIO^- + CI^- + H_2O$									
	(2) $Cu_2O + 2H^+ \rightarrow Cu + Cu^{2+} + H_2O$									
	(3) $2HCuCl_2 \xrightarrow{\text{dilutionwith}} Cu+Cu^{+2}+4Cl^-+ 2H^+$ (4) All of the above									
	water									
Q.17	One mole of N ₂ H ₄ loses 10 mole of electrons to form a new compound Y. Assuming that all nitrogen appear									
	in the new compound, what is oxidation state of nitrogen? (there is no change in the oxidation state of									
	hydrogen)									
	(1)-1 $(2)-3$									
	(3) + 3 (4) + 5									
Q.18	How many electrons should X₂H₄ liberate so that in the new compound x shows oxidation number of −1/2									
•	[E.N. x > H] —									
	(1) 10 (2) 4 (3) 3 (4) 2									
Q.19	Reaction (A) $S^{-2} + 4H_2O_2 \rightarrow SO_4^{2-} + 4H_2O$									
	(B) $Cl_2 + H_2O_2 \rightarrow 2HCI + O_2$									
	The true statement regarding the above reactions is :									
	(1) H ₂ O ₂ acts as reductant in both the reactions									
	(2) H_2O_2 acts as oxidant in reaction (A) and reductant in reaction (B).									
	(3) H ₂ O ₂ acts as an oxidant in both the reactions									

(4) H_2O_2 acts as reductant in reaction (A) and oxidant in reaction (B).

	formula of the compound is :							
	(1) ABC ₂	(2) B ₂ (AC ₃) ₂						
	(3) A ₃ (BC ₄) ₂	(4) $A_3(B_4C)_2$						
Q.21	In the reaction, VO + Fe ₂ O ₃ \rightarrow FeO + V ₂ O ₅ , the eq. wt. of V ₂ O ₅ is equal to its -							
	(1) Mol. wt.	(2) Mol. wt./8						
	(3) Mol. wt./6	(4) None of these						
Q.22	Molecular weight of KBrO₃ is M. What is its equivalent weight, if the reaction is –							
	BrO₃ ⁻ → Br ⁻ (acidic medium)							
	(1) M (2) M/4							
	(3) M/6	(4) 6 M						
Q.23	In the reaction : $A^{-n_2} + xe^- \rightarrow A^{-n_1}$, here x will be -							
	(1) $n_1 + n_2$ (2) $n_2 - n_1$							
		(4) n ₁ . n ₂						
Q.24	Fauivalent weight	of FeC₂O₄ in the change :						
_	FeC ₂ O ₄ \rightarrow Fe ³⁺ + CO ₂ is -							
	(1) M/3	(2) M/6						
	(3) M/6	(4) M/1						
Q.25	The number of mole of oxalate ions oxidised by one mole of MnO ⁻ 4 is :							
Q.23	(1) 1/5	(2) 2/5						
	(3) 5/2	(4) 5						
	(=, =, =							
Q.26	In a reaction 4 mole of electrons are transferred to one mole of HNO₃ when it acts as an oxidant. The possible							
	reduction product is :							
	(1) (1/2) mol N ₂	(2) (1/2) mole N₂O						
	(3) 1 mol of NO ₂	(4) 1 mole NH₃						

A compound contains atoms A, B and C. The oxidation number of A is +2, of B is +5 and of C is -2. The possible

Q.20

Q.27 $2KMnO_4+5H_2S+6H^+ \rightarrow 2Mn^{2+}+2K^++5S+8H_2O$

In the above reaction, how many electrons would be involved in the oxidation of 1 mole of reductant?

- (1) 2
- (2) 5
- (3) 10
- (4) 1

Q.28 Select the example of disproportionation reaction -

- (1) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$
- (2) $NH_4NO_3 \rightarrow N_2O + 2H_2O$
- (3) $4H_3PO_3 \rightarrow PH_3 + 3H_3PO_4$
- (4) AgCl + $2NH_3 \rightarrow Ag(NH_3)_2 Cl$

Q.29 The oxidation state of + 1 for phosphorous is found in :

- (1) Phosphorous acid
- (2) Orthophosphoric acid
- (3) Hypo phosphorous acid
- (4) Hypo phosphoric acid

Q.30 In the balanced equation

 $MnO_4^- + H^+ + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2 + H_2O$, the moles of CO_2 formed are -

- (1) 2
- (2) 4
- (3) 5
- (4) 10

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	3	3	4	2	2	1	2	3	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	1	3	1	2	4	3	3	2	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	3	1	3	2	1	3	3	4