Daily Practice Problems

NEET CHEMISTRY

Topic: Ionic Equilibrium
Q.1 Four solution of $\mathrm{NH}_{4} \mathrm{Cl}$ are taken with concentrations $1 \mathrm{M}, 0.1 \mathrm{M}, 0.01 \mathrm{M}$ and 0.001 M . Their degree of hydrolysis are h_{1}, h_{2}, h_{3} and h_{4}. What is the gradation of degree of hydrolysis?
(1) $h_{1}>h_{2}>h_{3}>h_{4}$
(2) $h_{1}=h_{2}=h_{3}=h_{4}$
(3) $h_{4}>h_{3}>h_{2}>h_{1}$
(4) None of these
Q. 2 The solubility product of BaCrO_{4} is $2.4 \times 10^{-10} \mathrm{M}^{2}$. The maximum concentration of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ possible without precipitation in a $6 \times 10^{-4} \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ solution is-
(1) $4 \times 10^{-7} \mathrm{M}$
(2) $1.2 \times 10^{10} \mathrm{M}$
(3) $6 \times 10^{-4} \mathrm{M}$
(4) $3 \times 10^{-4} \mathrm{M}$
Q.3 Which of the following will occur if a 1.0 M solution of a weak acid is diluted to 0.01 M at constant temperature
(1) Percentage ionization will increase
(2) $\left[\mathrm{H}^{+}\right]$will decrease to 0.01 M
(3) K_{a} will increase
(4) pH will decreases by 2 units
Q. 4 Correct statement for HCN weak acid at $25^{\circ} \mathrm{C}$ temperature -
(1) $\alpha=\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}$
(2) $\alpha=\frac{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{OH}^{-}\right]}{\mathrm{K}_{\mathrm{w}}}$
(3) (1) and (2) both
(4) $K_{b}=C \alpha^{2}$
Q. 5 At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6.7} \mathrm{~mol} \mathrm{~L}^{-1}$ what is the value of K_{w} at $90^{\circ} \mathrm{C}$ -
(1) 10^{-6}
(2) 10^{-12}
(3) 10^{-67}
(4) $10^{-13.4}$
Q. 6 The common ion effect is shown by which of the following sets of solutions -
(1) $\mathrm{BaCl}_{2}+\mathrm{BaNO}_{3}$
(2) $\mathrm{NaCl}+\mathrm{HCl}$
(3) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$
(4) None
Q. 7 Basic strength of $\mathrm{NH}_{4} \mathrm{OH}$ in presence of $\mathrm{NH}_{4} \mathrm{Cl}$
(1) Increases
(2) Remains unchanged
(3) Decreases
(4) Some times increases or sometimes decreases
Q. 8 If it is known that $\mathrm{H}_{2} \mathrm{~S}$ is a weak acid and it is ionized into $2 \mathrm{H}^{+}$and S^{-2}. Then in this solution HCl is added so, pH becomes less, then what will happen -
(1) Decrease in S^{-2} ion concentration
(2) Concentration of S^{-2} is not affected
(3) Increases in S^{-2} ion concentration
(4) It is not possible, to add HCl in solution
Q. 9 Maximum efficiency of cationic hydrolysis will be shown by -
(1) $A \ell^{+3}$
(2) Ga^{+3}
(3) $\mathrm{T} \ell^{+1}$
(4) $T \ell^{+3}$
Q. $10 \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCOOH}+\mathrm{OH}^{-}$is related -
(1) $h=\sqrt{K_{h}}$
(2) $h=\sqrt{\frac{K_{h}}{C}}$
(3) $\mathrm{h}=\sqrt{\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{V}}}$
(4) $K_{h}=\sqrt{h c}$
Q. 11 If pK_{b} for CN^{-}at 25 O C is 4.7. The pH of 0.5 M aqueous NaCN solution is :
(1) 12
(2) 10
(3) 11.5
(4) 11
Q. 12 The highest pH value is of -
(1) 0.1 M NaCl
(2) $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$
(3) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}^{2}$
(4) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONH}_{4}$

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.
Q. 13 A weak acid react with strong base ionization constant of weak acid is 10^{-4}. Find out equilibrium constant for this reaction -
(1) 10^{-10}
(2) 10^{10}
(3) 10^{-9}
(4) 10^{9}
Q. $14 K_{a}$ for cyano acetic acid is 3.5×10^{-3}. Then the degree of hydrolysis of 0.05 M , sodium cyano acetate solution will have the following value -
(1) 4.559×10^{-6}
(2) 5.559×10^{-6}
(3) 6.559×10^{-6}
(4) 7.559×10^{-6}
Q. 15 In solubility of salt $M_{2} X, Q Y_{2}$ and $P Z_{2}$ equal , then the relation between their $K_{s p}$ will be -
(1) $K_{\text {sp }}\left(M_{2} X\right)>K_{\text {sp }}\left(Q Y_{2}\right)>K_{\text {sp }}\left(P Z_{2}\right)$
(2) $K_{\text {sp }}\left(M_{2} X\right)=K_{\text {sp }}\left(Q Y_{2}\right)<K_{\text {sp }}\left(P Z_{2}\right)$
(3) $K_{\text {sp }}\left(M_{2} X\right)>K_{\text {sp }}\left(Q Y_{2}\right)=K_{\text {sp }}\left(P Z_{2}\right)$
(4) $K_{\text {sp }}\left(M_{2} X\right)=K_{\text {sp }}\left(Q Y_{2}\right)=K_{\text {sp }}\left(P Z_{2}\right)$
Q. 16 The expression of solubility product of mercurous iodide is
(1) $\left[2 \mathrm{Hg}^{+}\right]^{2} \times 2\left[\mathrm{l}^{-}\right]^{2}$
(2) $\left[\mathrm{Hg}^{++}\right] \times\left[2 \mathrm{I}^{-}\right]^{2}$
(3) $\left[\mathrm{Hg}_{2}{ }^{2+}\right] \times\left[1^{-}\right]^{2}$
(4) $\left[\mathrm{Hg}^{2+}\right]^{2} \times\left[1^{-}\right]^{2}$
Q. 17 At $25^{\circ} \mathrm{C}$, required volume of water, to dissolve $1 \mathrm{~g} \mathrm{BaSO} 4\left(\mathrm{~K}_{\mathrm{sp}}=1.1 . \times 10^{-10}\right)$ will be -
(1) 820 L
(2) 409.5 L
3) 205 L
(4) 430 L
Q. 18 How many grams of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ will dissolve in distilled water to make one litre saturated solution. $\mathrm{K}_{\text {sp }}$ of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ is $2.5 \times 10^{-9} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$ and its molecular weight is 128 .
(1) 0.0064 g
(2) 0.0128 g
(3) 0.0032 g
(4) 0.0640 g
Q. 19 If the solubility of AgCl (formula mass $=143$) in water at $25^{\circ} \mathrm{C}$ is $1.43 \times 10^{-4} \mathrm{~g} / 100 \mathrm{~mL}$ of solution then the value of $K_{\text {sp }}$ will be -
(1) 1×10^{-5}
(2) 2×10^{-5}
(3) 1×10^{-10}
(4) 2×10^{-10}
Q. 20 One litre of saturated solution of CaCO_{3} is evaporated to dryness, when 7.0 g of residue is left. The solubility product for CaCO_{3} is -
(1) 4.9×10^{-3}
(2) 4.9×10^{-5}
(3) 4.9×10^{-9}
(4) 4.9×10^{-7}
Q. 21 Correct order of solubility product is -
(1) $\mathrm{CaCrO}_{4}>\mathrm{SrCrO}_{4}>\mathrm{BaCrO}_{4}$
(2) $\mathrm{BaCrO}_{4}>\mathrm{SrCrO}_{4}>\mathrm{CaCrO}_{4}$
(3) $\mathrm{CaCrO}_{4}>\mathrm{BaCrO}_{4}>\mathrm{SrCrO}_{4}$
(4) $\mathrm{SrCrO}_{4}>\mathrm{BaCrO}_{4}>\mathrm{BaCrO}_{4}$
Q. $22 \mathrm{M}_{2} \mathrm{SO}_{4}\left(\mathrm{M}^{+}\right.$is a monovalent metal ion) has a $\mathrm{K}_{\text {sp }}$ of 1.2×10^{-5} at 298 K . Its maximum concentration of M^{+}ion that could be attained in a saturated solution of this solid at 298 K is -
(1) $3.46 \times 10^{-3} \mathrm{M}$
(2) $2.89 \times 10^{-2} \mathrm{M}$
(3) $2.8 \times 10^{-3} \mathrm{M}$
(4) $7.0 \times 10^{-3} \mathrm{M}$
Q. $23 \quad K_{\text {sp }}$ value is more for -
(1) CuS
(2) NiS
(3) PbS
(4) CdS
Q. 24 Solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1×10^{-11}. At what pH , precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$ will begin from $0.1 \mathrm{M} \mathrm{Mg}^{2+}$ solution -
(1) 9
(2) 5
(3) 3
(4) 7
Q. 25 What will happen if the pH of the solution of $0.001 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ solution is adjusted to $\mathrm{pH}=9$
$\left(\mathrm{K}_{\text {sp }} \mathrm{Mg}(\mathrm{OH})_{2}=8.9 \times 10^{-12}\right)$
(1) ppt will take place
(2) ppt will not take place
(3) Solution will be saturated
(4) None of these
Q. 26 A solution is a mixture of 0.06 M KCl and $0.06 \mathrm{M} \mathrm{KI} . \mathrm{AgNO}_{3}$ solution is being added drop by drop till AgCl starts precipitating ($\mathrm{K}_{\mathrm{sp}} \mathrm{AgCl}=1 \times 10^{-10}$ and $\mathrm{K}_{\mathrm{sp}} \mathrm{AgI}=4 \times 10^{-16}$). The concentration of lodide ion at this stage will be nearly equal to -
(1) $4.0 \times 10^{-5} \mathrm{M}$
(2) $2.4 \times 10^{-7} \mathrm{M}$
(3) $2.0 \times 10^{-8} \mathrm{M}$
(4) $4 \times 10^{-8} \mathrm{M}$
Q. 27 To have more sulphide ion concentration $\mathrm{H}_{2} \mathrm{~S}$ should be passed though -
(1) 1 N HCl solution
(2) 0.01 M HCl solution
(3) A neutral solution such as water
(4) An ammonical solution
Q. 28 When excess oxalic acid added to $\mathrm{CaCl}_{2}, \mathrm{CaC}_{2} \mathrm{O}_{4}$ is precipitated and the solution still contains some unprecipitated Ca^{2+} for the reason -
(1) $\mathrm{CaC}_{2} \mathrm{O}_{4}$ is a soluble salt
(2) Oxalic acid does not ionize at all
(3) When $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is added to $\mathrm{CaCl}_{2}, \mathrm{HCl}$ is formed which is fully ionized and thus increases the H^{+}ion concentration so suppresses the ionizations of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and hence the solubility product of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ is not exceeded -
(4) None of the above
Q. 29 What is the molar concentration of chloride ion for the solution obtained by mixing 300 mL of 3.0 M NaCl and 200 mL of 4.0 M solution of BaCl_{2} -
(1) 5.0 M
(2) 1.8 M
(3) 1.6 M
(4) None of these
Q. 30

Acetyl salicylic acid

(mol. wr $=180$) called aspirin is a pain killer with $\mathrm{pK}_{\mathrm{a}}=2$. If two tables each of 0.09 gm containing aspirin are dissolved in 100 mL solution. Its pH will be -
(1) 0.5
(2) 1.0
(3) 0.0
(4) 2.0

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	1	1	3	4	3	3	1	1	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	2	4	4	3	2	1	3	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	2	1	2	2	4	3	1	4

