

NEET CHEMISTRY

Topic: Ionic Equilibrium

- **Q.1** Four solution of NH₄Cl are taken with concentrations 1M, 0.1 M, 0.01 M and 0.001 M. Their degree of hydrolysis are h₁, h₂, h₃ and h₄. What is the gradation of degree of hydrolysis ?
 - (1) $h_1 > h_2 > h_3 > h_4$ (2) $h_1 = h_2 = h_3 = h_4$
 - (3) $h_4 > h_3 > h_2 > h_1$ (4) None of these
- **Q.2** The solubility product of BaCrO₄ is 2.4×10^{-10} M². The maximum concentration of Ba(NO₃)₂ possible without precipitation in a 6×10^{-4} M K₂CrO₄ solution is-
 - (1) 4×10^{-7} M (2) 1.2×10^{10} M
 - (3) 6×10^{-4} M (4) 3×10^{-4} M
- Q.3 Which of the following will occur if a 1.0 M solution of a weak acid is diluted to 0.01 M at constant temperature
 - (1) Percentage ionization will increase
 - (2) [H⁺] will decrease to 0.01 M
 - (3) K_a will increase
 - (4) pH will decreases by 2 units
- Q.4 Correct statement for HCN weak acid at 25°C temperature -

(1)
$$\alpha = \frac{K_a}{[H^+]}$$
 (2) $\alpha = \frac{K_a \times [OH^-]}{K_w}$

- (3) (1) and (2) both (4) $K_b = C\alpha^2$
- **Q.5** At 90°C, pure water has $[H_3O^+] = 10^{-6.7}$ mol L⁻¹ what is the value of K_W at 90°C -
 - (1) 10^{-6} (2) 10^{-12}
 - **(3)** 10⁻⁶⁷ **(4)** 10^{-13.4}

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

- Q.6 The common ion effect is shown by which of the following sets of solutions -
 - (1) $BaCl_2 + BaNO_3$ (2) NaCl + HCl
 - (3) $NH_4OH + NH_4CI$ (4) None
- Q.7 Basic strength of NH₄OH in presence of NH₄Cl
 - (1) Increases
 - (2) Remains unchanged
 - (3) Decreases
 - (4) Some times increases or sometimes decreases
- **Q.8** If it is known that H₂S is a weak acid and it is ionized into 2H⁺ and S⁻². Then in this solution HCl is added so, pH becomes less, then what will happen -
 - (1) Decrease in S^{-2} ion concentration
 - (2) Concentration of S⁻² is not affected
 - (3) Increases in S^{-2} ion concentration
 - (4) It is not possible , to add HCl in solution
- Q.9 Maximum efficiency of cationic hydrolysis will be shown by -

(1) $A\ell^{+3}$ (2) Ga^{+3} (3) $T\ell^{+1}$ (4) $T\ell^{+3}$

Q.10 HCOO⁻ + H₂O \implies HCOOH + OH⁻ is related -

(1) h =
$$\sqrt{K_{h}}$$
 (2) h = $\sqrt{\frac{K_{h}}{C}}$
(3) h = $\sqrt{\frac{K_{h}}{V}}$ (4) K_h = \sqrt{hc}

- **Q.11** If pK_b for CN^- at 25° C is 4.7. The pH of 0.5 M aqueous NaCN solution is :
 - (1) 12 (2) 10 (3) 11.5 (4) 11
- Q.12 The highest pH value is of -
 - (1) 0.1 M NaCl
 - (2) 0.1 M NH₄Cl
 - (3) 0.1 M CH₃COONa
 - (4) 0.1 M CH₃COONH₄

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

Q.13 A weak acid react with strong base ionization constant of weak acid is 10⁻⁴. Find out equilibrium constant for this reaction -

(1) 10^{-10} (2) 10^{10} (3) 10^{-9} (4) 10^{9}

- **Q.14** K_a for cyano acetic acid is 3.5×10^{-3} . Then the degree of hydrolysis of 0.05 M, sodium cyano acetate solution will have the following value -
 - (1) 4.559×10^{-6} (2) 5.559×10^{-6}
 - (3) 6.559×10^{-6} (4) 7.559×10^{-6}
- Q.15 In solubility of salt M₂X, QY₂ and PZ₂ equal , then the relation between their K_{sp} will be -

(1) $K_{sp}(M_2X) > K_{sp}(QY_2) > K_{sp}(PZ_2)$

- (2) $K_{sp}(M_2X) = K_{sp}(QY_2) < K_{sp}(PZ_2)$
- (3) $K_{sp}(M_2X) > K_{sp}(QY_2) = K_{sp}(PZ_2)$
- (4) $K_{sp}(M_2X) = K_{sp}(QY_2) = K_{sp}(PZ_2)$
- Q.16 The expression of solubility product of mercurous iodide is

(1) $[2 \text{ Hg}^+]^2 \times 2 [I^-]^2$ (2) $[\text{Hg}^{++}] \times [2I^-]^2$

- (3) $[Hg_2^{2+}] \times [I^-]^2$ (4) $[Hg^{2+}]^2 \times [I^-]^2$
- Q.17 At 25°C, required volume of water, to dissolve 1g BaSO₄ ($K_{sp} = 1.1 \times 10^{-10}$) will be -
 - (1) 820 L (2) 409.5L (3) 205 L (4) 430 L
- **Q.18** How many grams of CaC₂O₄ will dissolve in distilled water to make one litre saturated solution. K_{sp} of CaC₂O₄ is 2.5×10^{-9} mol²L⁻² and its molecular weight is 128.

(1) 0.0064 g	(2) 0.0128 g				
(3) 0.0032 g	(4) 0.0640 g				

Q.19 If the solubility of AgCl (formula mass = 143) in water at 25°C is 1.43×10^{-4} g/100 mL of solution then the value of K_{sp} will be -

(1) 1×10^{-5} (2) 2×10^{-5}

- (3) 1×10^{-10} (4) 2×10^{-10}
- **Q.20** One litre of saturated solution of $CaCO_3$ is evaporated to dryness, when 7.0 g of residue is left. The solubility product for $CaCO_3$ is -

(1) 4.9×10^{-3} (2) 4.9×10^{-5} (3) 4.9×10^{-9} (4) 4.9×10^{-7}

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

- Q.21 Correct order of solubility product is -
 - (1) $CaCrO_4 > SrCrO_4 > BaCrO_4$
 - (2) $BaCrO_4 > SrCrO_4 > CaCrO_4$
 - (3) $CaCrO_4 > BaCrO_4 > SrCrO_4$
 - (4) $SrCrO_4 > BaCrO_4 > BaCrO_4$
- **Q.22** M_2SO_4 (M⁺ is a monovalent metal ion) has a K_{sp} of 1.2×10^{-5} at 298 K. Its maximum concentration of M⁺ ion that could be attained in a saturated solution of this solid at 298 K is -
 - (1) 3.46×10^{-3} M (2) 2.89×10^{-2} M
 - (3) 2.8×10^{-3} M (4) 7.0×10^{-3} M
- Q.23 K_{sp} value is more for -
 - (1) CuS (2) NiS (3) PbS (4) CdS
- **Q.24** Solubility product of Mg(OH)₂ is 1×10^{-11} . At what pH, precipitation of Mg(OH)₂ will begin from 0.1 M Mg²⁺ solution -
 - (1) 9 (2) 5 (3) 3 (4) 7
- Q.25 What will happen if the pH of the solution of $0.001 \text{ M Mg}(NO_3)_2$ solution is adjusted to pH = 9

 $(K_{sp}Mg(OH)_2 = 8.9 \times 10^{-12})$

- (1) ppt will take place
- (2) ppt will not take place
- (3) Solution will be saturated
- (4) None of these
- **Q.26** A solution is a mixture of 0.06 M KCl and 0.06 M KI. AgNO₃ solution is being added drop by drop till AgCl starts precipitating (K_{sp} AgCl = 1 × 10⁻¹⁰ and K_{sp} AgI = 4 × 10⁻¹⁶). The concentration of lodide ion at this stage will be nearly equal to -

(1) 4.0×10^{-5} M (2) 2.4×10^{-7} M

(3) 2.0×10^{-8} M (4) 4×10^{-8} M

- Q.27 To have more sulphide ion concentration H₂S should be passed though -
 - (1) 1 N HCl solution
 - (2) 0.01 M HCl solution
 - (3) A neutral solution such as water
 - (4) An ammonical solution
- **Q.28** When excess oxalic acid added to CaCl₂, CaC₂O₄ is precipitated and the solution still contains some unprecipitated Ca²⁺ for the reason -
 - (1) CaC_2O_4 is a soluble salt
 - (2) Oxalic acid does not ionize at all
 - (3) When $H_2C_2O_4$ is added to CaCl₂, HCl is formed which is fully ionized and thus increases the H⁺ ion concentration so suppresses the ionizations of $H_2C_2O_4$ and hence the solubility product of CaC₂O₄ is not exceeded -
 - (4) None of the above
- Q.29 What is the molar concentration of chloride ion for the solution obtained by mixing 300 mL of 3.0 M NaCl and 200 mL of 4.0 M solution of BaCl₂ -
 - (1) 5.0 M (2) 1.8 M
 - (3) 1.6 M (4) None of these

(mol. wr = 180) called aspirin is a pain killer with $pK_a = 2$. If two tables each of 0.09 gm containing aspirin are dissolved in 100 mL solution. Its pH will be -

(1) 0.5 (2) 1.0 (3) 0.0 (4) 2.0

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	1	1	3	4	3	3	1	1	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	2	4	4	3	2	1	3	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	2	1	2	2	4	3	1	4

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.