Daily Practice Problems

NEET CHEMISTRY

Topic: GOC

Q. 1 Which of the following belongs to + I group
(A) -OH
(B) $-\mathrm{OCH}_{3}$
(C) -COOH
(D) $-\mathrm{CH}_{3}$
Q. 2 Which of them is false for order of -I effect
(A) $-\mathrm{F}>-\mathrm{Cl}>-\mathrm{Br}>-\mathrm{I}$
(B) $-\stackrel{\oplus}{N} \mathrm{R}_{3}>-\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3}>-\mathrm{NO}_{2}$
(C) $-\mathrm{OCH}_{3}>-\mathrm{OH}>-\mathrm{NH}_{2}$
(D)

Q. 3 Which of the statement is not correct?
(A) $-\mathrm{NH}_{2}$ is ortho-para directing group
(B) -CHO is meta directing group
(C) : CCl_{2} is an electrophile
$(D)-\underset{O}{0} \mathrm{H}$ is $(-M)$ group
Q. 4 Among the following compounds, the strongest acid is -
(A) $\mathrm{HC} \equiv \mathrm{CH}$
(B) $\mathrm{C}_{6} \mathrm{H}_{6}$
(C) $\mathrm{C}_{2} \mathrm{H}_{6}$
(D) $\mathrm{CH}_{3} \mathrm{OH}$
Q. 5 Heterolysis of propane will yield -
(A) $\dot{\mathrm{C}} \mathrm{H}_{3}$ and $\dot{\mathrm{C}}_{2} \mathrm{H}_{5}$ radicals
(B) CH_{3}^{-}and $\mathrm{CH}_{3} \mathrm{CH}_{2}^{+}$ions
(C) CH_{3}^{+}and $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$ions
(D) CH_{3}^{+}and $\mathrm{CH}_{3} \mathrm{CH}_{2}^{+}$ions
Q. 6 Carbocations may be stabilised by -
(A) π-bonds only at allylic position
(B) π-bonds only at vinylic position
(C) π-bonds at allylic and nonallylic position also
(D) - I effect
Q. 7 In the anion HCOO^{-}, the two carbon-oxygen bonds are found to be equal length. What is the reason for it -
(A) the $\mathrm{C}=\mathrm{O}$ bond is weaker than the $\mathrm{C}-\mathrm{O}$ bond
(B) the anion HCOO^{-}has two resonating structures
(C) the electronic orbitals of carbon atom are hybridized
(D) the anion of obtained by removal of proton from the acid molecule
Q. 8 Which of the following resonance structures is the major contributor to the resonance hybrid ?

(I)
$\Leftrightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\stackrel{\oplus}{\stackrel{\oplus}{.}} \mathrm{CH}_{3}$
(II)
(A) I
(B) II
(C) Both have equal contribution
(D) They are not resonance structures

Reg.Office : A-14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.
Q. 9 Consider the following three halides -
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{Cl}$

Arrange $\mathrm{C}-\mathrm{Cl}$ bond length of these compounds in decreasing order -
(A) $a>b>c(B) a>c>b$
(C) $c>b>a$
(D) $b>c>a$
Q. 10 The species $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{HCH}_{3}$ is less stable than-
(A) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(C) $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(D) CH_{3}^{+}
Q. 11 Increasing order of electrophilic substitution for following compounds -

(I)

(II)

(III)

(IV)
(A) IV $<$ I $<$ II $<$ III
(B) III $<$ I $<$ II $<$ IV
(C) I $<$ IV $<$ III $<$ II
(D) II $<$ III $<$ I $<$ IV
Q. 12 Arrange in decreasing pK_{b} -
(a) $\mathrm{F}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

(c) $\mathrm{F}-\mathrm{CH}_{2}-\mathrm{COOH}$
(d) $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$

Correct answer is -

(A) (b) $>$ (d) $>$ (a) $>$ (c)
(B) (a) $>$ (c) $>$ (d) $>$ (b)
(C) (c) $>$ (b) $>$ (a) $>$ (d)
(D) (d) $>$ (b) $>$ (a) $>$ (c)
Q. 13 The strongest base is -
(A)

(B)

(C)

(D)

Q. 14 In which of the following cases, the carbocation (I) is less stable than the carbocation (II) ?
(A)

(B)

(II)
(C)

(D) $\mathrm{H}_{3} \mathrm{C}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}(\mathrm{I}), \mathrm{C}_{2}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$ (II)
Q. 15 Which among the following species is an ambident nucleophile -
(A) Acetone
(B) Cyanide ion
(C) Nitrite ion
(D) Sulphite ion
Q. 16 Which of the following statements is not true about the resonance contributing structures of a resonance hybrid
(A) Contributing structures contribute to the resonance hybrid in proportion of their energies
(B) Equivalent contributing structures make the resonance very important
(C) Contributing structures represent hypothetical molecules having no real existence
(D) Contributing structures are less stable than the resonance hybrid
Q. 17 Among the given compounds, the one which is least basic is -
(A)

(B)

(C)

(D)

Q. 18 Which of the following is the weakest nucleophile -
(A) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$
(B) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}^{-}$
(C) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(D) $\mathrm{CO}_{3}{ }^{2-}$
Q. 19 Which of the following compounds on gentle heating will undergo facile homolytic bond cleavage ?
(A)

(B) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
(C) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$

$$
\text { (D) }\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{O}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}
$$

Q. 20 Give the correct order of increasing acidity of the following compounds -
(I) $\mathrm{ClCH}_{2} \mathrm{COOH}$
(II) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
(III) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(IV) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}$
(V) $\mathrm{CH}_{3} \mathrm{COOH}$
(A) V $<$ II $<$ IV $<$ I $<$ III
(B) IV $<$ II $<$ V $<$ III $<$ I
(C) III $<$ I $<$ IV $<$ II $<$ IV
(D) V $<$ IV $<$ II $<$ I $<$ III
Q. 21 Which of the following molecules can behave both as a nucleophile and an electrophile?
(A) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(B) $\mathrm{CH}_{3} \mathrm{Cl}$
(C) $\mathrm{CH}_{3} \mathrm{CN}$
(D) $\mathrm{CH}_{3} \mathrm{OH}$

Reg.Office : A-14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.
Q. 22 Which of the following shows the correct order of decreasing acidity -
(A) $\mathrm{PhCO}_{2} \mathrm{H}>\mathrm{PhSO}_{3} \mathrm{H}>\mathrm{PhCH}_{2} \mathrm{OH}>\mathrm{PhOH}$
(B) $\mathrm{PhSO}_{3} \mathrm{H}>\mathrm{PhOH}>\mathrm{PhCH}_{2} \mathrm{OH}>\mathrm{PhCH}_{2} \mathrm{OH}$
(C) $\mathrm{PhCO}_{2} \mathrm{H}>\mathrm{PhOH}>\mathrm{PhCH}_{2} \mathrm{OH}>\mathrm{PhSO}_{3} \mathrm{H}$
(D) $\mathrm{PhSO}_{3} \mathrm{H}>\mathrm{PhCO}_{2} \mathrm{H}>\mathrm{PhOH}>\mathrm{PhCH}_{2} \mathrm{OH}$
Q. 23 Which of the following correctly shows the order of decreasing basicity -
(A) Aniline >o-nitroaniline >p-nitroaniline > m-nitroaniline
(B) Aniline > p-nitroaniline > o-nitroaniline > m-nitroaniline
(C) Aniline > m-nitroaniline > p-nitroaniline > o-nitroaniline
(D) o-Nitroaniline > p-nitroaniline > aniline > m-nitroaniline
Q. 24 (I)

(II)

(III)

(IV)

The correct order of decreasing basicity of the above compound is -
(A) I $>$ II $>$ III $>$ IV
(B) II $>$ I $>$ IV $>$ III
(C) III $>$ IV $>$ II $>$ I
D) II $>$ I $>$ III $>$ IV
Q. 25 Give the correct order of increasing acidity of the following compounds -
(I)

(II)

(III)

(IV)

(A) II $<$ I $<$ IV $<$ III
(B) IV $<$ II $<$ I $<$ III
(C) I $<$ II $<$ IV $<$ III
(D) IV $<$ I $<$ II $<$ III
Q. 26 Select the correct order of basicity -
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}>\mathrm{CH}_{2}=\mathrm{CH}^{-}>\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}>\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{CH}_{2}=\mathrm{CH}^{-}>\mathrm{OH}^{-}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}>\mathrm{OH}^{-}>\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{CH}_{2}=\mathrm{CH}^{-}$
(D) $\mathrm{OH}^{-}>\mathrm{HC} \equiv \mathrm{C}^{-}>\mathrm{CH}_{2}=\mathrm{CH}^{-}>\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$
Q. 27 Which of the following substituents will decrease the acidity of phenol -
(A) $-\mathrm{NO}_{2}$
(B) -CN
(C) $-\mathrm{CH}_{3}$
(D) -CHO
Q. 28 The correct order of increasing stability of the following carbocations is -
(A)

(B)

(C) $\mathrm{FCH}_{2} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}>\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}}_{\mathrm{C}}^{\mathrm{H}} \mathrm{H}_{2}>\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}>\underset{\mathrm{F}}{\mathrm{CH}_{3} \mathrm{C}_{\mathrm{C}} \mathrm{H} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}}$
(D) $\mathrm{CH}_{3} \underset{\mathrm{~F}}{\mathrm{C}} \stackrel{+}{\mathrm{F}} \mathrm{H}_{2}>\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}>\mathrm{FCH}_{2} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}>\mathrm{CH}_{3} \stackrel{+}{\mathrm{O}} \mathrm{H}_{2}$
Q. 29 In which of the following does the C-H bond (shown by a thick line) have the least bond dissociation energy -
(A) $\mathrm{PhCH}_{2}-\mathrm{H}$
(B) $\mathrm{Me}_{3} \mathrm{C}-\mathrm{H}$
(C) $\mathrm{Me}_{2} \mathrm{CH}-\mathrm{H}$
(D) $\mathrm{Me}-\mathrm{H}$
Q. 30 Which of the following shows the correct order of stability -
(A) $\mathrm{CH}_{3}{\stackrel{+}{\mathrm{O}} \mathrm{HCH}_{3}<\mathrm{CH}_{3} \mathrm{O} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}<\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}<\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}}^{2}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}<\mathrm{CH}_{3} \stackrel{+}{\mathrm{CH}_{2}}<\mathrm{CH}_{3} \stackrel{+}{\mathrm{O}} \mathrm{HCH}_{3}<\mathrm{CH}_{3} \mathrm{O} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}<\mathrm{CH}_{3} \stackrel{+}{\stackrel{ }{+}} \mathrm{H}_{2}<\mathrm{CH}_{3} \mathrm{O}^{+} \mathrm{H}_{2}<\mathrm{CH}_{3} \mathrm{O}^{+} \mathrm{CHCH}_{3}$
(D) $\mathrm{CH}_{3}{\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}}<\mathrm{CH}_{3} \mathrm{O}^{+} \mathrm{CHCH}_{3}<\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}<\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$

ANSWER KEY

| Que. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ans. | D | D | D | D | B | A | B | A | A | A |
| Que. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Ans. | A | C | B | C | A | A | B | D | D | B |
| Que. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Ans. | C | D | C | B | B | A | C | B | A | C |

