

Q.1 For the reaction : 2HI (g) \rightleftharpoons H₂(g) + I₂(g); the degree of dissociation (α) of HI (g) is related to equilibrium constant K_p by the expression

(A)
$$\frac{1+2\sqrt{K_p}}{2}$$
 (B) $\frac{\sqrt{1+2K_p}}{2}$
(C) $\sqrt{\frac{2K_p}{1+2K_p}}$ (D) $\frac{2\sqrt{K_p}}{1+2\sqrt{K_p}}$

Q.2 When 1 mole H₂O(g) and 1 mole CO(g) are heated at 1000^oC in a closed vessel of 5 litre, it was found that 40% of H₂O react at equilibrium, according to

 $H_2O(g) + CO(g) \Longrightarrow H_2(g) + CO_2(g)$

 $\rm K_{c}$ of the reaction will be -

- (A) 0.444(B) 0.555(C) 0.666(D) 0.786
- **Q.3** In a dilute solution there are two equilibria $KCI(s) \Longrightarrow K^+ + CI^- \dots K_1 = 10^x$ $Ag^+ + CI^- \Longrightarrow AgCI(s) \dots K_2 = 10^y$ The equilibrium, constant for the reaction $Ag^+ + KCI_{(s)} \Longrightarrow K^{\oplus} + AgCI_{(s)}$ in dilute solution is -(A) 10^{x+y} (B) 10^{x-y}
 - (C) 10^y (D) (10^x)^y
- **Q.4** $CaCO_3(s) \Longrightarrow CaO(s) + CO_2(g).$

For above reaction, ΔG^{ϱ} (standard Gibb's free energy) will be :

(A)
$$\Delta G^{\circ} = -RT \ \ell n \ \frac{1}{P_{CO_2}}$$

- (B) $\Delta G^{\circ} = -RT \ \ell n \ P_{CO_2}$
- (C) $\Delta G^{\circ} = -2RT \ \ell n \ P_{CO_2}$
- (D) none of these

www.aggarwaleducare.com

Q.5 The endothermic reaction $MCO_3(s) \Longrightarrow MO(s) + CO_2(g)$ is taking place in such a way that the vapour pressure of CO_2 is equal to atmospheric pressure. Which of the following is not correct ?

(A) $\Delta G^{\circ} = 0$ (B) $K_{p} = 1$

(C) $\Delta G = 0$ (D) $\Delta H = 0$

Q.6 For $NH_4HS(s) \Longrightarrow NH_3(g) + H_2S(g)$, if $K_p = 64$ atm², equilibrium pressure of mixture is:

- (A) 8 atm (B) 16 atm
- (C) 64 atm (D) 4 atm
- **Q.7** At 35°C, the equilibrium constant for the reaction below is 2NOCl (g) \rightleftharpoons 2NO(g) + Cl₂(g);

$$K_c = 1.6 \times 10^{-5}$$

An equilibrium mixture was found to have the following concentration of Cl_2 and NOCI. $[Cl_2] = 1.2 \times 10^{-2}$ M, $[NOCI] = 2.8 \times 10^{-1}$ M. Calculate the concentration of NO(g) at equilibrium :

(A) 1.0 × 10 ⁻⁴ M	(B) 1.0 × 10 ⁻² M
(C) 2.8 × 10 ⁻¹ M	(D) 2.4 × 10 ⁻² M

Q.8 2.0 mol of PCl_{s} were introduced in a vessel of 5.0 L capacity at a particular temperature. At equilibrium, PCl_{s} was found to be 35% dissociated into PCl_{3} and Cl_{2} . The value of K_{c} for the reaction is -

(A) 1.89	(B) 0.377
(C) 0.75	(D) 0.075

Q.9 The reaction A + B → C + D is studied in a one litre vessel at 250°C. The initial concentration of A was 3n and the initial concentration of B was n. After equilibrium was attained then equilibrium concentration of C was found to be equal to equilibrium concentration of B. What is the concentration of D at equilibrium ?

(A) n/2 (B) (3n - n/2)

- (C) n (D) None of these
- **Q.10** Which of the following is not favourable for formation of SO₃?

 $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g); \Delta H = -188 \text{ KJ}$ (A) High pressure (B) High temperature

(C) Decreasing $[SO_3]$ (D) Increasing $[SO_2]$

Q.11 On heating a mixture of SO₂Cl₂ and CO, two equilibria are simultaneously established :

 $SO_2Cl_2(g) \Longrightarrow SO_2(g) + Cl_2(g)$

 $CO(g) + Cl_2(g) \Longrightarrow COCl_2(g)$

On adding more SO₂ at equilibrium what will happen ?

- (A) Amount of CO will decrease
- (B) Amount of SO₂Cl₂ and COCl₂ will increase
- (C) Amount of CO will remain unaffected
- (D) Amount of SO₂Cl₂ and CO will increase
- **Q.12** For the reaction, $N_2O_4(g) \Longrightarrow 2NO_2(g)$; if percentage dissociation of N_2O_4 are 25%, 50%, 75% and 100%, then the sequence of observed vapour densities will be -

(A) $d_1 > d_2 > d_3 > d_4$ (B) $d_4 > d_3 > d_2 > d_1$

(C) $d_1 = d_2 = d_3 = d_4$ (D) $(d_1 = d_2) > (d_3 = d_4)$

Q.13 Consider the reaction,

(i) $PCI_5(g) \Longrightarrow PCI_3(g) + CI_2(g)$

(ii) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

The addition of an inert gas at constant volume -

- (A) will increase the dissociation of PCI_5 as well as N_2O_4
- (B) will reduce the dissociation of PCI_5 as well as N_2O_4
- (C) will increase the dissociation of PCI_5 and step up the formation of NO_2
- (D) will not disturb the equilibrium of the reactions
- Q.14 At constant pressure, the presence of inert gases -
 - (A) reduces the dissociation of PCI_5
 - (B) increases the dissociation of PCI_5
 - (C) does not affect the degree of dissociation of PCI₅
 - (D) steps up the formation of PCI_5

www.aggarwaleducare.com

Q.15 In the reaction :

 $NH_2COONH_4(s) \Longrightarrow 2NH_3(g) + CO_2(g)$

the equilibrium pressure was 3 atm at 1000 K. The K_{p} of the reaction -

- (A) 27
 (B) 4
 (C) 4/27
 (D) 27/4
- **Q.16** In the decomposition reaction of ammonia :

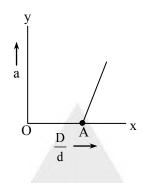
 $2NH_3(g) \Longrightarrow N_2(g) + 3H_2(g)$

2 moles of NH_3 are introduced in the vessel of 1 litre. At equilibrium, 1 mole of NH_3 was left, the value of K_c will be :

- (A) 0.75
 (B) 0.70
 (C) 1.75
 (D) 1.70
- **Q.17** When lnK is plotted against $\frac{1}{T}$ using the van't Hoff equation, a straight line is expected will a slope equal to -

(A) $\Delta H^{\circ}/RT(B) - \Delta H^{\circ}/R$

(C) $\Delta H^{\circ}/R$ (D) $R/\Delta H^{\circ}$

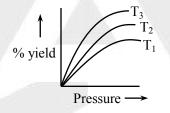

Q.18 For the reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, the forward reaction at constant temperature is favoured by -

- I. introducing inert gas at constant volume.
- II. introducing inert gas at constant pressure.
- III. decreasing pressure of the reaction mixture.
- IV. by adding $\ensuremath{\mathsf{PCI}}_3$ to the reaction mixture.
- (A) I and II (B) II and III
- (C) I and III (D) III and IV

Q.19 Decomposition of N₂O₄(g) takes place as follows :

 $N_2O_4(g) \Longrightarrow 2NO_2(g)$

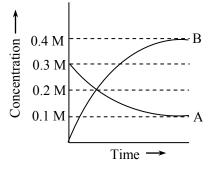
'D' is the vapour density at initial stage and 'd' is the vapour density at equilibrium. We get following graph when the degree of dissociation 'a' is plotted against $\left(\frac{D}{d}\right)$


What is the value of $\frac{D}{d}$ at A ?

(A) 0 (B) 0.5 (C) 1 (D) 1.5

Q.20 Percentage yield of following reaction is plotted against pressure at a definite temperature :

 $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g); \Delta H = -ve$


Which of the following relation is correct ?

(A) $T_1 > T_2 > T_3$ (B) $T_3 > T_2 > T_1$ (C) $T_1 = T_2 = T_3$ (D) $T_1 > T_2 < T_3$

Q.21 The figure shows the change in concentration of species A and B as a function of time.

The equilibrium constant K_c for the reaction $A(g) \Longrightarrow 2B(g)$ is -

(A) K_C > 1 (B) K < 1

- (C) K = 1 (D) data insufficient
- Q.22 Determine the value of equilibrium constant (K_c) for the reaction

 $A_2(g) + B_2(g) \Longrightarrow 2AB(g).$

If 10 moles of A_2 ; 15 moles of B_2 and 5 moles of AB are placed in a 2 litre vessel and allowed to come to equilibrium. The final concentration of AB is 7.5 M :

- (A) 4.5 (B) 1.5
- (C) 0.6 (D) None of these
- **Q.23** Given the following reaction at equilibrium, $N_2(g) + 3H_2(g) \implies 2NH_3(g)$. Some inert gas at constant pressure is added to the system. Predict which of the following facts will be affected ?
 - (A) More NH₃(g) is produced
 - (B) Less NH₃(g) is produced
 - (C) No affect on the equilibrium
 - (D) K_p of the reaction is decreased
- Q.24 Some inert gas is added at constant volume to the following reaction at equilibrium

 $NH_4HS(s) \Longrightarrow NH_3(g) + H_2S(g)$

Predict the effect of adding the inert gas -

- (A) the equilibrium shifts in the forward direction
- (B) the equilibrium shifts in the backward direction
- (C) the equilibrium remains unaffected
- (D) the value of K_p is increased
- **Q.25** Consider the following reactions at equilibrium and determine which of the indicated changes will cause the reaction to proceed to the right -
 - (1) $CO(g) + 3H_2(g) \implies CH_4(g) + H_2O(g)$ (add CH_4)
 - (2) $N_2(g) + 3H_2(g) \implies 2NH_3(g)$ (remove NH_3)
 - $(3) H_2(g) + F_2(g) \Longrightarrow 2HF(g) \quad (add F_2)$
 - (C) $BaO(s) + SO_3(g) \implies BaSO_4(s)$ (add BaO)
 - (A) 2, 3 (B) 1, 4 (C) 2, 4 (D) 2, 3, 4

www.aggarwaleducare.com

If the pressure in a reaction vessel for the following reaction is increased by decreasing the volume, what will Q.26 happen to the concentrations of CO and CO₂?

 $H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g) + Heat$

(A) both the [CO] and [CO₂] will decrease

(B) neither the [CO] nor the [CO₂] will change

(C) both [CO] will decrease and the [CO₂] will increase

(D) both the [CO] and [CO₂] will increase

COMPREHENSION BASED QUESTION

Passage : (Q.27 & Q.28)

For general reaction,

 $aA + bB \rightleftharpoons cC + dD$

equilibrium constant K_c is given by the following relation.

× RT

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

However, when all reactants and products are gases, the equilibrium constant is generally expressed in terms of partial pressures. The relationship between the partial pressure (p) of any one gas in the equilibrium mixture and the molar concentrations can be correlated provided the gas behaves as an ideal gas.

Q.27 The relation between partial pressure of the gas and its molar concentration at a given temperature T is -

(A)
$$p = \frac{\text{molar concentrat ion}}{T}$$

(B) $p = \frac{\text{molar concentrat ion}}{RT}$
(C) $p = \text{molar concentration} \times R^{2}$
(D) $p = \text{molar concentration} \times T$

Q.28 Equilibrium constant for the following reaction is

aA + bB 🔁 cC + dD

(A)
$$K_{p} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \times P$$

(B) $K_{p} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \times \frac{(RT)^{c-d}}{(RT)^{a-b}}$
(C) $K_{p} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \times \frac{(RT)^{c+d}}{(RT)^{a+b}}$
(D) $K_{p} = \frac{K_{c}RT}{P}$

STATEMENT BASED QUESTION 88

Each of the questions given below consist of Statement – I and Statement – II. Use the following Key to choose the appropriate answer.

- (A) If both Statement-I and Statement-II are true, and Statement-II is the correct explanation of Statement-I.
- (B) If both Statement I and Statement II are true but Statement II is not the correct explanation of Statement I.
- (C) If Statement I is true but Statement II is false.
- (D) If Statement I is false but Statement II is true.
- Q.29 Statement I. For the reaction

 $H_2(g) + I_2(g) \Longrightarrow 2HI(g), K_p = K_c.$

Statement - II. K_p of all gaseous reactions is equal to K_c.

Q.30 Statement - I. K_p is related to K_c by the relation,

 $K_p = K_c (RT)^{\Delta n}$

Statement - II. K_p has same units as K_c .

		- Al			100					
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	A	А	В	D	В	В	D	А	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	А	D	В	В	D	в	В	с	А
Que.	21	22	23	24	25	26	27	28	29	30
1								N.		
Ans.	А	А	В	С	А	D	С	С	С	С

ANSWER KEY

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.