

Daily Practice Problems

JEE PHYSICS

Topic - Modern Physics II

SECTION (A) : PROPERTIES OF NUCLEUS

- (D) varies in a way that depends on the actual value of A.
- **B.3** Which of the following is a wrong description of binding energy of a nucleus ?
 - (A) It is the energy required to break a nucleus into its constituent nucleons.
 - (B) It is the energy made avilable when free nucleons combine to from a nucleus
 - (C) It is the sum of the rest mass energies of its nucleons minus the rest mass energy of the nucleus
 - (D) It is the sum of the kinetic energy of all the nucleons in the nucleus

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

B.4	The energy of the re nuclei are 5.60 and 7 (A) 17.3 MeV (D) depends on bind	action Li ⁷ + p —→ 2 He ⁴ 7.06 MeV respectively.) (B) – 17.3 MeV ling energy of proton	is (the binding energy pe (C) 1.46 MeV	er nucleon in Li ⁷ and He ⁴
B.5	The atomic weight of b (A) 19 : 81 (B) 1	ooron is 10.81 and it has two 0 : 11 (C) 15 : 16	isotopes ¹⁰ ₅ B and ¹¹ ₅ B. The (D) 81 : 19	ratio of ${}_5^{10}$ B : ${}_5^{11}$ B in nature would be:
SECT	ION (C) : RADIOA	ACTIVE DECAY		
C.1	The radioactive nucle (A) positron	eus ₇ N ¹³ decays to ₆ C ¹³ thro (B) neutron	ough the emission of (C) proton	(D) electron
C.2	An α -particle is bomba (A) neutron	rded on ¹⁴ N. As a result, a ¹⁷ (B) proton	O nucleus is formed and a (C) electron	particle is emitted. This particle is a (D) positron
C.3	In beta decay, (A) the daughter nuc (B) the parent and th (C) the daughter nuc (D) the daughter nuc	leus has one proton more e daughter nuclei have th leus has one neutron mo leus has one proton less	e than the parent nucleu he same number of proto re than the parent nucle than the parent nucleus	S ons US S.
C.4	In a radioactive deca particles is emitted in (A) proton	y, neither the atomic numb the decay ? (B) neutorn	per nor the mass number (C)electron	changes. Which of the following (D) photon
C.5	During a negative beta (A) an atomic electron (B) an electron which (C) a neutron in the nu (D) a proton in the nu	a decay, n is ejected is already present within t ucleus decays emitted an e cleus decays emitting an e	he nucleus is ejected electron electron	
C.6	In which of the followi (A) α -decay	ng decays the element do (B) β⁺-decay	es not change ? (C) β ⁻ -decay	(D)γ-decay
C.7	Which of the following (A) α -rays	are electromagnetic waves (B) beta-plus rays	s ? (C) beta-minus rays	(D) gamma rays
C.8	A nucleus raptures into of their nuclear sizes (r (A) $2^{1/3}$: 1	o two nuclear parts which ha radii) ? (B) 1 : 2 ^{1/3}	ave their velocities in the r (C) $3^{1/2}$: 1	ratio of 2 : 1. What will be the ratio (D) 1 : $3^{1/2}$
C.9	A free neutron decays (A) A neutrino	into a proton, an electron a (B) An antineutrino	and : (C) An α-particle	(D)Aβ-particle

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

SECTION (D) : STATISTICAL LAW OF RADIOACTIVE DECAY

		www.aggarv	valeducare.com				
	mass of 2_1 D = 2.01458 MeV/c²) (A) 0.66 Kg/ day	amu; mass of 3_1 T = 3.0 (B) 2.64 kg/ day	01605 amu; mass of $\frac{1}{1}$ p (C) 132 gm/day	= 1.00728 amu & 1 amu = 930 (D) 1.32 kg/day			
D.11	A fusion reaction of the type given below ${}_{1}^{2}D + {}_{1}^{2}D \longrightarrow {}_{1}^{3}T + {}_{1}^{1}p + \Delta E$, is most promising for the production of power. Here D & T stand for deuterium & tritium, respectively. Assuming the efficiency of the process to be 50 %, the mass of deuterium required per day for a power output of 10 ⁹ W is (Given:						
D.10	During a nuclear fission (A) a heavy nucleus bre (B) a light nucleus bom (C) a heavy nucleus bor (D) two light nuclei com	reaction, eaks into two fragments b parded by thermal neutro mbarded by thermal neut bine to give a heavier nu	y itself ns break up rons breaks up cleus and possibly other	products.			
D.9	The half-life of a radioad (A) its temperature (C) the mass of the sub (D) the strength of the n	ctive substance depends (B) the externa stance nuclear force between the	upon : I pressure on it nucleons of its atom				
D.8	The half-life of a radioar (A) the substance comp (B) the substance comp (C) 1/8 part of the mass (D) 7/8 part of the mass	ctive substance is 10 day pletely disintegrates in 20 pletely disintegrates in 40 s of the substance will be s of the substance disinte	rs. This means that :) days) days left intact at the end of 4 grates in 30 days	40 days			
D.7	Ten grams of ⁵⁷ Co kept material inside the cont (A) 10 g	t in an open container be ainer after 540 days will b (B) proton	eta-decays with a half-lif be very nearly (C) electron	e of 270 days. The weight of the (D) positron			
D.6	Two isotopes P and Q o 20 days their weight rati (A) zero	f atomic weight 10 and 20 o is found to be 1 : 4. Isoto (B) 5 days	0, respectively are mixed ope P has a half-life of 10 (C) 20 days	d in equal amount by weight. After days. The half-life of isotope Q is (D) inifinite			
D.5	The half life of ₉₂ U ²³⁸ ag part of this isotope is (A) 9.0 × 10 ⁹	gainst alpha decay is 4.5 : (B) 1.8 × 10 ¹⁰	x 10 ⁹ years. The time tak (C) 4.5 × 10 ⁹	en in years for the decay of $15/16$ (D) 2.7 × 10^{10}			
D.4	The activity of a certai [take In (0.4) = – 0.91 (A) 2.9 days	n preparation decreases 6] (B) 5.3 days	s by 75% after 7.0 days (C) 3.5 days	. The half life of the sample is (D) 6 days			
D.3	The decay constant of a (A) $1/\lambda$ and (In $2/\lambda$) (C) 1(In 2) and $1/\lambda$	radoactive sample is λ . Th	the half-life and the average (B) (In2/ λ) and 1/ λ (D) λ /(In 2) and 1/ λ	e-life of the sample are respectively			
D.2	A freshly prepared radioo safe level. The minimum (A) 6 h	cative source of half-life 2 h m time after which it wou (B) 12 h	n emits radiation of intensi ld be possible to work sat (C) 24 h	ty which is 64 times the permissible fely with this source is (D) 128 h			
D.1	In one average-life (A) half the active nucle (C) more than half the a	i decay ctive nuclei decay	(B) less than h (D) all the nuclei decay	alf the active nuclei decay			

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

Answer Key

Section A

Que.	A.1	A.2	A.3	A.4	A.5
Ans.	А	С	С	D	Α

Section B

Que.	B.1	B.2	B.3	B.4	B.5
Ans.	В	D	D	А	А

Section C

Que.	C.1	C.2	C.3	C.4	C.5	C.6	C.7	C.8	C.9
Ans.	A	В	A	D	С	D	D	В	В

Section D

Que.	D.1	D.2	D.3.	D.4	D.5	D.6	D.7	D.8	D.9	D. 10
Ans.	С	В	В	В	В	0	A	D	D	С
Que.	D.11									
Ans.	D									

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.