

Daily practice Problems

JEE MATHS

Topic - Method of Differentiation

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

Q.7	If $\sin(xy) + \cos(xy) = 0$ then $\frac{dy}{dx} =$									
	(A) $\frac{y}{x}$	(B) $-\frac{y}{x}$	(C) $-\frac{x}{y}$	(D) $\frac{x}{y}$						
Q.8	If $y = \sin^{-1} \frac{2x}{1+x^2}$ then $\frac{dy}{dx} \Big _{x=-2}$ is :									
	(A) $\frac{2}{5}$	(B) $\frac{2}{\sqrt{5}}$	(C) $-\frac{2}{5}$	(D) none						
Q.9	The derivative of $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$ w.r.t. $\sqrt{1-x^2}$ at $x = \frac{1}{2}$ is :									
	(A) 4	(B) 1/4	(C) 1	(D) none						
Q.10	If $y^2 = P(x)$, is a polynomial of degree 3, then $2\left(\frac{d}{dx}\right)\left(y^3 \cdot \frac{d^2y}{dx^2}\right)$ equals :									
	(A) $P'''(x) + P'(x)$	(B) $P''(x) . P'''(x)$	(C) $P(x) . P'''(x)$	(D) a constant						
Q.11	g(x) = f(x) + f'(x) + f	c expression which is portunate (x), then for any real x (B) $g(x) > 0$	x, which one is correct.	(D) $g(x) \ge 0$						
Q.12	If $x^p \cdot y^q = (x + y)^{p+q}$	then $\frac{dy}{dx}$ is :								
	(A) independent of p(C) dependent on bo	but dependent on q	(B) dependent on p but independent of q(D) independent of p & q both .							
Q.13	Let $f(x) = \begin{bmatrix} g(x) \cdot \cos x \\ 0 \end{bmatrix}$	$ \begin{array}{l} \frac{1}{x} & \text{if } x \neq 0 \\ \text{if } x = 0 \end{array} \text{ where } g(x) = 0 \end{array} $	(x) is an even function of	differentiable at $x = 0$, passing						
	through the origin. Th (A) is equal to 1		(C) is equal to 2	(D) does not exist						
Q.14	If $y = \frac{1}{1 + x^{n-m} + x^{p-n}}$	$\frac{1}{m} + \frac{1}{1 + \mathbf{x}^{m-n} + \mathbf{x}^{p-n}} + \frac{1}{m}$	$\frac{1}{1+x^{m-p}+x^{n-p}} \text{ then } \frac{d}{dt}$	$\frac{1}{2}$ at $e^{m^{n^p}}$ is equal to:						
	(A) e^{mnp}		(C) $e^{np/m}$	(D) none						
Q.15	$\lim_{x \to 0} \frac{\log_{\sin^2 x} \cos x}{\log_{\sin^2 \frac{x}{2}} \cos \frac{x}{2}}$ has the value equal to									
	(A) 1	(B) 2	(C) 4	(D) none of these						
Q.16	If f is differentiable in	n(0, 6) & f'(4) = 5 then	$\lim_{x \to 2} \lim_{x \to 2} \frac{f(4) - f(x^2)}{2 - x}$	=						
	(A) 5	(B) 5/4	(C) 10	(D) 20						

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

Q.17 Let $l = \lim_{x \to 0^+} x^m (ln x)^n$ where m, $n \in N$ then: (A) *l* is independent of m and n (C) *l* is independent of n and dependent on m (D) *l* is dependent on both m and n

Q.18 Let
$$f(x) = \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x^2 & 2x \\ \tan x & x & 1 \end{vmatrix}$$
. Then $\lim_{x \to 0} \frac{f'(x)}{x} =$
(A) 2 (B) -2 (C) -1 (D) 1
Q.19 Let $f(x) = \begin{vmatrix} \cos x & \sin x & \cos x \\ \cos 2x & \sin 2x & 2\cos 2x \\ \cos 3x & \sin 3x & 3\cos 3x \end{vmatrix}$ then $f'(\frac{\pi}{2}) =$
(A) 0 (B) -12 (C) 4 (D) 12

Q.20 People living at Mars, instead of the usual definition of derivative D f(x), define a new kind of derivative, $D^*f(x)$ by the formula

$$D^*f(x) = \underset{h \to 0}{\text{Limit}} \frac{f^2(x+h) - f^2(x)}{h} \text{ where } f^2(x) \text{ means } [f(x)]^2. \text{ If } f(x) = x \ln x \text{ then}$$
$$D^*f(x)|_{x=e} \text{ has the value}$$

Q.21 If f(4) = g(4) = 2; f'(4) = 9; g'(4) = 6 then $\lim_{x \to 4} \frac{\sqrt{f(x)} - \sqrt{g(x)}}{\sqrt{x} - 2}$ is equal to :

(A)
$$3\sqrt{2}$$
 (B) $\frac{3}{\sqrt{2}}$ (C) 0 (D) none

Q.22 If f(x) is a differentiable function of x then $\lim_{h \to 0} \frac{f(x+3h) - f(x-2h)}{h} =$ (A) f'(x) (B) 5f'(x) (C) 0 (D) none

Q.23 If $y = x + e^x$ then $\frac{d^2x}{dy^2}$ is :

(A)
$$e^{x}$$
 (B) $-\frac{e^{x}}{(1+e^{x})^{3}}$ (C) $-\frac{e^{x}}{(1+e^{x})^{2}}$ (D) $\frac{1}{(1+e^{x})^{2}}$

Q.24 If $x^2y + y^3 = 2$ then the value of $\frac{d^2y}{dx^2}$ at the point (1, 1) is :

(A)
$$-\frac{3}{4}$$
 (B) $-\frac{3}{8}$ (C) $-\frac{5}{12}$ (D) none

Q.25 If f(a) = 2, f'(a) = 1, g(a) = -1, g'(a) = 2 then the value of $\lim_{x \to a} \frac{g(x) \cdot f(a) - g(a) \cdot f(x)}{x - a}$ is: (A) -5 (B) 1/5 (C) 5 (D) none

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

Q.26 If f is twice differentiable such that f''(x) = -f(x), f'(x) = g(x) $h'(x) = [f(x)]^2 + [g(x)]^2$ and h(0) = 2, h(1) = 4

> then the equation y = h(x) represents : (A) a curve of degree 2

(C) a straight line with slope 2

(B) a curve passing through the origin

(D) a straight line with y intercept equal to -2.

Q.27 The derivative of the function,
$$f(x) = \cos^{-1}\left\{\frac{1}{\sqrt{13}}\left(2\cos x - 3\sin x\right)\right\} + \sin^{-1}\left\{\frac{1}{\sqrt{13}}\left(2\cos x + 3\sin x\right)\right\}$$

w.r.t. $\sqrt{1 + x^2}$ at $x = \frac{3}{4}$ is: (A) $\frac{3}{2}$ (B) $\frac{5}{2}$ (C) $\frac{10}{3}$ (D) 0

Q.29 The solution set of f'(x) > g'(x), where $f(x) = \frac{1}{2} (5^{2x+1}) \& g(x) = 5^x + 4x (ln 5)$ is : (A) x > 1 (B) 0 < x < 1 (C) x ≤ 0 (D) x > 0

Q.30 If
$$y = \sin^{-1} \frac{x^2 - 1}{x^2 + 1} + \sec^{-1} \frac{x^2 + 1}{x^2 - 1}$$
, $|x| > 1$ then $\frac{dy}{dx}$ is equal to :
(A) $\frac{x}{x^4 - 1}$ (B) $\frac{x^2}{x^4 - 1}$ (C) 0 (D) 1

Answer Key

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	А	С	В	D	В	В	В	С	А	С
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	D	В	D	С	D	А	В	С	С
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	Α	В	В	В	С	С	С	D	D	С

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.