TM
Daily practice Problems

JEE MATHS

Topic - Method of Differentiation

Q. $1 \quad$ If g is the inverse of $f \& f^{\prime}(x)=\frac{1}{1+x^{5}}$ then $g^{\prime}(x)=$
(A) $1+[g(x)]^{5}$
(B) $\frac{1}{1+[g(x)]^{5}}$
(C) $-\frac{1}{1+[g(x)]^{5}}$
(D) none
Q. 2 If $y=\tan ^{-1}\left(\frac{\ell \ln \frac{e}{x^{2}}}{\ell \ln x^{2}}\right)+\tan ^{-1} \frac{3+2 \ln x}{1-6 \ln x}$ then $\frac{d^{2} y}{d x^{2}}=$
(A) 2
(B) 1
(C) 0
(D) -1
Q. $3 \quad$ If $y=f\left(\frac{3 x+4}{5 x+6}\right) \& f^{\prime}(x)=\tan x^{2}$ then $\frac{d y}{d x}=$
(A) $\tan x^{3}$
(B) $-2 \tan \left[\frac{3 x+4}{5 x+6}\right]^{2} \cdot \frac{1}{(5 x+6)^{2}}$
(C) $\mathrm{f}\left(\frac{3 \tan \mathrm{x}^{2}+4}{5 \tan \mathrm{x}^{2}+6}\right) \tan \mathrm{x}^{2}$
(D) none
Q. 4 If $y=\sin ^{-1}\left(x \sqrt{1-x}+\sqrt{x} \sqrt{1-x^{2}}\right) \& \frac{d y}{d x}=\frac{1}{2 \sqrt{x(1-x)}}+p$, then $p=$
(A) 0
(B) $\sin ^{-1} x$
(C) $\sin ^{-1} \sqrt{x}$
(D) none of these
Q. 5 If $y=f\left(\frac{2 x-1}{x^{2}+1}\right) \& f^{\prime}(x)=\sin x$ then $\frac{d y}{d x}=$
(A) $\frac{1+\mathrm{x}-\mathrm{x}^{2}}{\left(1+\mathrm{x}^{2}\right)^{2}} \sin \left(\frac{2 \mathrm{x}-1}{\mathrm{x}^{2}+1}\right)$
(B) $\frac{2\left(1+x-x^{2}\right)}{\left(1+x^{2}\right)^{2}} \sin \left(\frac{2 x-1}{x^{2}+1}\right)$
(C) $\frac{1-\mathrm{x}+\mathrm{x}^{2}}{\left(1+\mathrm{x}^{2}\right)^{2}} \sin \left(\frac{2 \mathrm{x}-1}{\mathrm{x}^{2}+1}\right)$
(D) none
Q. 6 Let g is the inverse function of $f \& f^{\prime}(x)=\frac{x^{10}}{\left(1+x^{2}\right)}$. If $g(2)=a$ then $g^{\prime}(2)$ is equal to
(A) $\frac{5}{2^{10}}$
(B) $\frac{1+a^{2}}{a^{10}}$
(C) $\frac{a^{10}}{1+a^{2}}$
(D) $\frac{1+\mathrm{a}^{10}}{\mathrm{a}^{2}}$
Q. 7 If $\sin (x y)+\cos (x y)=0$ then $\frac{d y}{d x}=$
(A) $\frac{y}{x}$
(B) $-\frac{y}{x}$
(C) $-\frac{x}{y}$
(D) $\frac{x}{y}$
Q. 8 If $y=\sin ^{-1} \frac{2 x}{1+x^{2}}$ then $\left.\frac{d y}{d x}\right]_{x=-2}$ is :
(A) $\frac{2}{5}$
(B) $\frac{2}{\sqrt{5}}$
(C) $-\frac{2}{5}$
(D) none
Q. 9 The derivative of $\sec ^{-1}\left(\frac{1}{2 \mathrm{x}^{2}-1}\right)$ w.r.t. $\sqrt{1-\mathrm{x}^{2}}$ at $\mathrm{x}=\frac{1}{2}$ is :
(A) 4
(B) $1 / 4$
(C) 1
(D) none
Q. 10 If $y^{2}=P(x)$, is a polynomial of degree 3 , then $2\left(\frac{d}{d x}\right)\left(y^{3} \cdot \frac{d^{2} y}{d x^{2}}\right)$ equals :
(A) $\mathrm{P}^{\prime \prime \prime}(\mathrm{x})+\mathrm{P}^{\prime}(\mathrm{x})$
(B) $\mathrm{P}^{\prime \prime}(\mathrm{x}) . \mathrm{P}^{\prime \prime \prime}(\mathrm{x})$
(C) $\mathrm{P}(\mathrm{x}) \cdot \mathrm{P}^{\prime \prime \prime}(\mathrm{x})$
(D) a constant
Q. 11 Let $f(x)$ be a quadratic expression which is positive for all real x. If $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})+\mathrm{f}^{\prime \prime}(\mathrm{x})$, then for any real x , which one is correct .
(A) $g(x)<0$
(B) $g(x)>0$
(C) $g(x)=0$
(D) $g(x) \geq 0$
Q. 12 If $x^{p} \cdot y^{q}=(x+y)^{p+q}$ then $\frac{d y}{d x}$ is :
(A) independent of p but dependent on q
(B) dependent on p but independent of q
(C) dependent on both $\mathrm{p} \& \mathrm{q}$
(D) independent of p \& q both .
Q. 13 Let $f(x)=\left[\begin{array}{ll}g(x) \cdot \cos \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ where $g(x)$ is an even function differentiable at $x=0$, passing through the origin. Then $\mathrm{f}^{\prime}(0)$:
(A) is equal to 1
(B) is equal to 0
(C) is equal to 2
(D) does not exist
Q. 14 If $y=\frac{1}{1+x^{n-m}+x^{p-m}}+\frac{1}{1+x^{m-n}+x^{p-n}}+\frac{1}{1+x^{m-p}+x^{n-p}}$ then $\frac{d y}{d x}$ at $e^{m^{n^{p}}}$ is equal to:
(A) $e^{m n p}$
(B) $e^{m n / p}$
(C) $\mathrm{e}^{\mathrm{np} / \mathrm{m}}$
(D) none
Q. $15 \operatorname{Lim}_{x \rightarrow 0} \frac{\log _{\sin ^{2} x} \cos x}{\log _{\sin ^{2} \frac{x}{2}} \cos \frac{x}{2}}$ has the value equal to
(A) 1
(B) 2
(C) 4
(D) none of these
Q. 16 If f is differentiable in $(0,6) \& f^{\prime}(4)=5$ then $\operatorname{Limit}_{x \rightarrow 2} \frac{f(4)-f\left(x^{2}\right)}{2-x}=$
(A) 5
(B) $5 / 4$
(C) 10
(D) 20
Q. 17 Let $l=\operatorname{Lim}_{x \rightarrow 0^{+}} \mathrm{x}^{\mathrm{m}}(\ln \mathrm{x})^{\mathrm{n}}$ where $\mathrm{m}, \mathrm{n} \in \mathrm{N}$ then :
(A) l is independent of m and n
(B) l is independent of m and depends on m
(C) l is independent of n and dependent on m
(D) l is dependent on both m and n
Q. 18 Let $f(x)=\left|\begin{array}{llr}\cos x & x & 1 \\ 2 \sin x & x^{2} & 2 x \\ \tan x & x & 1\end{array}\right|$. Then $\underset{x \rightarrow 0}{\operatorname{Limit}} \frac{f^{\prime}(x)}{x}=$
(A) 2
(B) -2
(C) -1
(D) 1
Q. 19 Let $f(x)=\left|\begin{array}{ccc}\cos x & \sin x & \cos x \\ \cos 2 x & \sin 2 x & 2 \cos 2 x \\ \cos 3 x & \sin 3 x & 3 \cos 3 x\end{array}\right|$ then $f^{\prime}\left(\frac{\pi}{2}\right)=$
(A) 0
(B) -12
(C) 4
(D) 12
Q. 20 People living at Mars, instead of the usual definition of derivative $\mathrm{D} f(\mathrm{x})$, define a new kind of derivative, $\mathrm{D} * \mathrm{f}(\mathrm{x})$ by the formula
$D * f(x)=\underset{h \rightarrow 0}{\operatorname{Limit}} \frac{f^{2}(x+h)-f^{2}(x)}{h}$ where $f^{2}(x)$ means $[f(x)]^{2}$. If $f(x)=x \ln x$ then $\left.D * f(x)\right|_{x=e}$ has the value
(A) e
(B) 2 e
(C) 4 e
(D) none
Q. $21 \quad$ If $f(4)=g(4)=2 ; f^{\prime}(4)=9 ; g^{\prime}(4)=6$ then $\operatorname{Limit}_{x \rightarrow 4} \frac{\sqrt{f(x)}-\sqrt{g(x)}}{\sqrt{x}-2}$ is equal to :
(A) $3 \sqrt{2}$
(B) $\frac{3}{\sqrt{2}}$
(C) 0
(D) none
Q. 22 If $f(x)$ is a differentiable function of x then $\operatorname{Limit}_{h \rightarrow 0} \frac{f(x+3 h)-f(x-2 h)}{h}=$
(A) $\mathrm{f}^{\prime}(\mathrm{x})$
(B) $5 \mathrm{f}^{\prime}(\mathrm{x})$
(C) 0
(D) none
Q. 23 If $y=x+e^{x}$ then $\frac{d^{2} x}{d y^{2}}$ is :
(A) e^{x}
(B) $-\frac{e^{x}}{\left(1+e^{x}\right)^{3}}$
(C) $-\frac{\mathrm{e}^{\mathrm{x}}}{\left(1+\mathrm{e}^{\mathrm{x}}\right)^{2}}$
(D) $\frac{-1}{\left(1+\mathrm{e}^{\mathrm{x}}\right)^{3}}$
Q. 24 If $x^{2} y+y^{3}=2$ then the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(1,1)$ is :
(A) $-\frac{3}{4}$
(B) $-\frac{3}{8}$
(C) $-\frac{5}{12}$
(D) none
Q. 25 If $f(a)=2, f^{\prime}(a)=1, g(a)=-1, g^{\prime}(a)=2$ then the value of $\operatorname{Limimit}_{x \rightarrow a} \frac{g(x) \cdot f(a)-g(a) \cdot f(x)}{x-a}$ is:
(A) -5
(B) $1 / 5$
(C) 5
(D) none
Q. 26 If fis twice differentiable such that $f^{\prime \prime}(x)=-f(x), f^{\prime}(x)=g(x)$

$$
\begin{gathered}
\mathrm{h}^{\prime}(\mathrm{x})=[\mathrm{f}(\mathrm{x})]^{2}+[\mathrm{g}(\mathrm{x})]^{2} \text { and } \\
\mathrm{h}(0)=2, \mathrm{~h}(1)=4
\end{gathered}
$$

then the equation $\mathrm{y}=\mathrm{h}(\mathrm{x})$ represents :
(A) a curve of degree 2
(B) a curve passing through the origin
(C) a straight line with slope 2
(D) a straight line with y intercept equal to -2 .
Q. 27 The derivative ofthe function, $\mathrm{f}(\mathrm{x})=\cos ^{-1}\left\{\frac{1}{\sqrt{13}}(2 \cos \mathrm{x}-3 \sin \mathrm{x})\right\}+\sin ^{-1}\left\{\frac{1}{\sqrt{13}}(2 \cos \mathrm{x}+3 \sin \mathrm{x})\right\}$ w.r.t. $\sqrt{1+\mathrm{x}^{2}}$ at $\mathrm{x}=\frac{3}{4}$ is :
(A) $\frac{3}{2}$
(B) $\frac{5}{2}$
(C) $\frac{10}{3}$
(D) 0
Q. 28 Let $f(x)$ be a polynomial in x. Then the second derivative of $f\left(e^{x}\right)$, is :
(A) $\mathrm{f}^{\prime \prime}\left(\mathrm{e}^{\mathrm{x}}\right) \cdot \mathrm{e}^{\mathrm{x}}+\mathrm{f}^{\prime}\left(\mathrm{e}^{\mathrm{x}}\right)$
(B) $\mathrm{f}^{\prime \prime}\left(\mathrm{e}^{\mathrm{x}}\right) \cdot \mathrm{e}^{2 \mathrm{x}}+\mathrm{f}^{\prime}\left(\mathrm{e}^{\mathrm{x}}\right) \cdot \mathrm{e}^{2 \mathrm{x}}$
(C) $f^{\prime \prime}\left(e^{x}\right) e^{2 x}$
(D) $f^{\prime \prime}\left(e^{x}\right) \cdot e^{2 x}+f^{\prime}\left(e^{x}\right) \cdot e^{x}$
Q. 29 The solution set of $f^{\prime}(x)>g^{\prime}(x)$, where $f(x)=\frac{1}{2}\left(5^{2 x+1}\right) \& g(x)=5^{x}+4 x(\ln 5)$ is :
(A) $x>1$
(B) $0<x<1$
(C) $\mathrm{x} \leq 0$
(D) $x>0$
Q. 30 If $y=\sin ^{-1} \frac{x^{2}-1}{x^{2}+1}+\sec ^{-1} \frac{x^{2}+1}{x^{2}-1},|x|>1$ then $\frac{d y}{d x}$ is equal to :
(A) $\frac{x}{x^{4}-1}$
(B) $\frac{x^{2}}{x^{4}-1}$
(C) 0
(D) 1

Answer Key

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A	C	B	D	B	B	B	C	A	C
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	B	D	B	D	C	D	A	B	C	C
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	A	B	B	B	C	C	C	D	D	C

