

Daily Practice Problems

NEET PHYSICS

Topic: Matter Waves

- **Q.1** If the value of Planck's constant is more than its present value then the De-Broglie wavelength associated with a material particle will be -
 - (1) more (2) less
 - (3) same (4) more for light particles and less for heavy particles
- Q.2 A moving car of 2000 kg mass and velocity of 30 m/sec has associated de-Broglie wavelength given is-
 - (1) 10^{-38} m (2) 6.62×10^{-34} m (3) 1.1×10^{-38} m (4) 1.1×10^{-38} cm
- Q.3 A particle of rest mass m₀ moves with a speed c. The de-Broglie wavelength associated with it will be-
 - (1) zero (2) infinite (3) $\frac{h}{m_0 c}$ (4) $\frac{m_0 c}{h}$
- Q.4 The wave associated with each moving material particle are -
 - (1) probability waves (2) mechanical waves
 - (3) electromagnetic waves (4) imaginary waves
- Q.5 The wave nature of electron was verified by -
 - (1) photoelectric effect
 - (2) Compton effect
 - (3) the incidence of electron on metallic surface
 - (4) diffraction of electron by crystal

www.aggarwaleducare.com

- Q.6 The waves associated with electrons revolving in various Bohr orbits in an atom are -
 - (1) transverse (2) longitudinal
 - (3) progressive (4) stationary
- **Q.7** The mass of a particle is m kg. If mass is increased nine times keeping its energy constant, then the de-Broglie wavelength associated with it will
 - (1) Remain unchanged
 - (2) become half
 - (3) become one third
 - (4) become nine times
- Q.8 The velocity at which the mass of a particle becomes twice its rest mass, will be -

(1)
$$\frac{2c}{3}$$
 (2) $\frac{c}{2}$
(3) $\frac{c\sqrt{3}}{2}$ (4) $\frac{3c}{4}$

- Q.9 The mass of electron varies with -
 - (1) Electron velocity
 - (2) The size of cathode ray tube
 - (3) Variation of g
 - (4) The size of electron
- **Q.10** If E and p are the respective energy and momentum of a photon, then on reducing the wavelength of the photon,
 - (1) both p and E will decrease
 - (2) both p and E will increase
 - (3) p will increase but E will decrease
 - (4) p will decrease but E will increase

www.aggarwaleducare.com

- Q.11 The momentum of photon of energy 1 MeV will approximately be -
 - (1) 10⁻²² Kg-m/s
 - (2) 5 × 10⁻²² Kg-m/s
 - (3) 3 × 10⁶ Kg-m/s
 - (4) 0
- Q.12 The frequency of a photon of momentum p will be -
 - (1) $\frac{pc}{h}$ (2) $\frac{ph}{c}$
 - (3) $\frac{\mathrm{mh}}{\mathrm{c}}$ (4) $\frac{\mathrm{mc}}{\mathrm{h}}$
- **Q.13** If the energy of a photon of light of frequency v is E and its momentum is P, then the velocity of light is
 - (1) EP (2) E/P
 - (3) P/E (4) 1/EP
- Q.14 The momentum of photon of wavelength 0.01 Å will be -
 - (1) h (2) 10^{-2} h
 - (3) 10^{12} h (4) 10^{2} h
- Q.15 The energy of a photon (in eV) of wavelength 5000 Å will be -
 - (1) 2.48 eV (2) 8.42 eV
 - (3) zero (4) 4.82 eV
- **Q.16** The wavelength of a photon of momentum 6.6×10^{-24} Kg-m/s will be -
 - (1) 10 Å (2) 1 Å
 - (3) 100 Å (4) 1000 Å

www.aggarwaleducare.com

- **Q.17** The momentum of photon of frequency 10^9 Hz will be -
 - (1) 31 Kg m/s (2) 7.3×10^{-2g} Kg-m/s
 - (3) 2.2×10^{-33} Kg-m/s (4) 6.6×10^{-26} kg-m/s
- **Q.18** Through what potential difference should an electron be accelerated so that its de Broglie wavelength become 0.4 Å
 - (1) 9410 V (2) 94.10 V
 - (3) 9.140 V (4) 941.0 V
- **Q.19** The energy of an α -particle, whose de-Broglie wavelength is 0.004 Å will be -
 - (1) 1270 eV (2) 1200 KeV
 - (3) 1200 MeV (4) 1200 GeV
- **Q.20** The study of diffraction of electrons from a target, gives the wavelength associated as 0.65Å. The energy of the electrons will be -
 - (1) 40eV (2) 100 eV
 - (3) 356 eV (4) 1000 eV
- **Q.21** The energies of an photon and an electron of mass m are same. The ratio of wavelengths associated with them will be -
 - (1) $c \sqrt{E/2m}$ (2) $\sqrt{2mc/E}$
 - (3) $c \sqrt{2m/E}$ (4) $\sqrt{E/2mc}$
- **Q.22** Two particles of mass m_1 and m_2 respectively are identically charged and are accelerated by same potential. If de-Broglie wavelength associated with them are λ_1 and λ_2 then -

(1)
$$\frac{\lambda_1}{\lambda_2} = \frac{m_2}{m_1}$$
 (2) $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{m_2}{m_1}}$

(3) $\frac{\lambda_1}{\lambda_2} = \frac{m_1}{m_2}$ (4) $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{m_1}{m_2}}$

www.aggarwaleducare.com

- **Q.23** An electron is 2000 times lighter than a proton. An electron and a proton are moving with such a velocity that de-Broglie wave associated with them is 1Å. The ratio of their K.E. will be -
 - (1) 1 : 2000 (2) 2000 : 1
 - (3) 1 : 1 (4) 1 : (4.0106)
- **Q.24** A double slit interference experiment is performed by a beam of electrons of energy 100 eV and the fringe spacing is observed to be β . Now if the electrons energy is increased to 10 keV, then the fringe spacing -
 - (1) remains the same (2) becomes 10β
 - (3) becomes 100β (4) becomes $\beta/10$
- Q.25 An electron beam of energy 10 keV is passed through a slit of width 1 mm. The observed phenomenon will be -
 - (1) interference
 - (2) diffraction
 - (3) rectilinear propagation
 - (4) polarisation
- **Q.26** If E₁, E₂ and E₃ are the respective kinetic energies of an electron, an alpha particle and a proton, each having the same de Broglie wavelength, then -
 - (1) $E_1 > E_3 > E_2$ (2) $E_2 > E_3 > E_1$
 - (3) $E_1 > E_2 > E_3$ (4) $E_1 = E_2 = E_3$
- **Q.27** The de-Broglie wavelength of a particle of mass m and charge e, accelerated through potential V will be -
 - (1) h/ $\sqrt{2meV}$ (2) \sqrt{hmeV}
 - (3) m/ $\sqrt{2heV}$ (4) None of the above

- **Q.28** The electron of a H-atom moves in nth orbit. If the length of the orbit is L and de-Broglie wavelength is λ , then the relation between them is -
 - (1) $L = \lambda/n$ (2) $\lambda = n/L$
 - (3) $L = n\lambda$ (4) $L = nh\lambda$
- **Q.29** If the momentum of electron is changed by P_m then the De Broglie wavelength associated with it changes by 0.50 %. The initial momentum of electron will be -
 - (1) $\frac{P_{m}}{200}$ (2) $\frac{P_{m}}{100}$
 - (3) 200 P_m (4) 400 P_m
- **Q.30** When the momentum of a proton is changed by an amount P_0 , the corresponding change in the de-Broglie wavelength is found to be 0.25%. Then the original momentum of the proton was -
 - (1) P_0 (2) 100 P_0
 - (3) 400 P₀ (4) 4 P₀

ANSWER KEY

						1				
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	3	1	1	4	4	3	3	1	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	2	3	1	2	3	4	1	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	2	2	4	3	1	1	3	3	3

www.aggarwaleducare.com