Daily Practice Problems

Mathematics

Topic: Inverse Trigonometric Functions

Q. 1 If $\left(\tan ^{-1} x\right)^{2}+\left(\cot ^{-1} x\right)^{2}=\frac{5 \pi^{2}}{8}$, then x equals-
(A) -1
(B) 1
(C) 0
(D) None of these
Q. $2 \sum_{\mathrm{r}=1}^{\mathrm{n}} \tan ^{-1}\left(\frac{2^{\mathrm{r}-1}}{1+2^{2 \mathrm{r}-1}}\right)$ is equal to -
(A) $\tan ^{-1}\left(2^{n}\right)$
(B) $\tan ^{-1}\left(2^{n}\right)-\frac{\pi}{4}$
(C) $\tan ^{-1}\left(2^{n+1}\right)$
(D) $\tan ^{-1}\left(2^{n+1}\right)-\frac{\pi}{4}$
Q. 3 If $\tan ^{-1} \frac{1}{a-1}=\tan ^{-1} \frac{1}{x}+\tan ^{-1} \frac{1}{a^{2}-x+1}$, then x is-
(A) $\frac{\mathrm{a}}{2}$
(B) a^{3}
(C) $a^{2}-a+1$
(D) $a^{2}+a-1$
Q. $4 \tan ^{-1} \mathrm{n}+\cot ^{-1}(\mathrm{n}+1)$ is equal to-
(A) $\cot ^{-1}\left(n^{2}+n+1\right)$
(B) $\cot ^{-1}\left(n^{2}-n+1\right)$
(C) $\tan ^{-1}\left(n^{2}+n+1\right)$
(D) None of these
Q. 5 The value of $\sin \left[\cot ^{-1}\left(\cot \frac{17 \pi}{3}\right)\right]$ is-
(A) $-\frac{\sqrt{3}}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) None of these
Q. $6 \sec \left(\operatorname{cosec}^{-1} x\right)$ is equal to-
(A) $\operatorname{cosec}\left(\sec ^{-1} x\right)$
(B) $\cot x$
(C) π
(D) None of these
Q. 7 If $\sum_{i=1}^{20} \sin ^{-1} x_{i}=10 \pi$ then $\sum_{i=1}^{20} x_{i}$ is equal to-
(A) 20
(B) 10
(C) 0
(D) None of these
Q. 8 The value of $\cot ^{-1} 3+\sec ^{-1} \frac{\sqrt{5}}{2}$ is-
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) None of these
Q. $9 \quad-\frac{2 \pi}{5}$ is the principal value of -
(A) $\cos ^{-1}\left(\cos \frac{7 \pi}{5}\right)$
(B) $\sin ^{-1}\left(\sin \frac{7 \pi}{5}\right)$
(C) $\sec ^{-1}\left(\sec \frac{7 \pi}{5}\right)$
(D) None of these
Q. 10 If $\theta=\sin ^{-1}\left(\sin \left(-600^{\circ}\right)\right)$, then one of the possible value of θ is-
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{2}$
(C) $\frac{2 \pi}{3}$
(D) $-\frac{2 \pi}{3}$
Q. $11 \sin \left[2 \cos ^{-1}\left(-\frac{3}{5}\right)\right]$ is equal to -
(A) $\frac{6}{25}$
(B) $\frac{24}{25}$
(C) $\frac{4}{5}$
(D) $-\frac{24}{25}$
Q. 12 If $\sin ^{-1} \sin x=\cos ^{-1} \cos x ; \forall 0<x<\pi$ then $x=$
(A) $\left[0, \frac{\pi}{4}\right]$
(B) $\left(0, \frac{\pi}{2}\right]$
(C) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
(D) $\left[0, \frac{\pi}{2}\right)$
Q. 13 If $\sin ^{-1} x-\cos ^{-1} x=\frac{\pi}{6}$, then x is-
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $-\frac{1}{2}$
(D) None of these
Q. 14 The principal value of $\cos ^{-1}\left(-\sin \frac{7 \pi}{6}\right)$ is-
(A) $\frac{5 \pi}{3}$
(B) $\frac{7 \pi}{6}$
(C) $\frac{\pi}{3}$
(D) None of these
Q. 15 The number of positive integral solutions of the equation $\tan ^{-1} x+\cos ^{-1} \frac{y}{\sqrt{1+y^{2}}}=\sin ^{-1} \frac{3}{\sqrt{10}}$ is-
(A) one
(B) two
(C) zero
(D) None of these
Q. 16 The value of
$\sin ^{-1}\left[\cot \left(\sin ^{-1} \sqrt{\left(\frac{2-\sqrt{3}}{4}\right)}\right.\right.$
$\left.\left.+\cos ^{-1}\left(\frac{\sqrt{12}}{4}\right)+\sec ^{-1} \sqrt{2}\right)\right]$ is -
(A) 0
(B) $\pi / 4$
(C) $\pi / 6$
(D) $\pi / 2$
Q. 17 The value of $\tan \left\{\left(\cos ^{-1}\left(-\frac{2}{7}\right)-\pi / 2\right)\right\}$ is-
(A) $\frac{2}{3 \sqrt{5}}$
(B) $\frac{2}{3}$
(C) $\frac{1}{\sqrt{5}}$
(D) $\frac{4}{\sqrt{5}}$
Q. 18 If $\cos ^{-1}(a)+\cos ^{-1}(b)+\cos ^{-1}(c)=3 \pi$ and $f(1)=2, f(x+y)=f(x) f(y)$ for all x, y; then $a^{2 f(1)}+b^{2 f(2)}+c^{2 f(3)}+\frac{(a+b+c)}{a^{2 f(1)}+b^{2 f(2)}+c^{2 f(3)}}$
is equal to -
(A) 0
(B) 1
(C) 2
(D) 3
Q. $19 \tan ^{-1} \tan \left(\frac{5 \pi}{7}\right)$ is equal to-
(A) $\frac{2 \pi}{7}$
(B) $\frac{5 \pi}{7}$
(C) $-\frac{2 \pi}{7}$
(D) $\frac{\pi}{7}$
Q. 20 The principal value of
$\sin ^{-1}\left(-\frac{1}{2}\right)+\tan ^{-1}(1)+\cos ^{-1} \cos \left(-\frac{\pi}{2}\right)$ is -
(A) $\frac{5 \pi}{12}$
(B) $-\frac{5 \pi}{12}$
(C) $\frac{\pi}{12}$
(D) $\frac{7 \pi}{12}$
Q. 21 If $\sin ^{-1} x+\tan ^{-1} x=y(-1<x<1)$, then which is not possible -
(A) $y=\frac{3 \pi}{2}$
(B) $y=0$
(C) $y=\frac{\pi}{2}$
(D) $y=-\frac{\pi}{2}$
Q. 22 The number of positive integral solutions of $\cos ^{-1}\left(4 x^{2}-8 x+\frac{7}{2}\right)=\frac{\pi}{3}$ is -
(A) one
(B) two
(C) three
(D) None of these

Statement type Questions

Each of the questions given below consists of Statement-I and Statement-II. Use the following Key to choose the appropriate answer.
(A) If both Statement-I and Statement-II are true, and Statement-II is the correct explanation of Statement-I.
(B) If both Statement-I and Statement-II are true but Statement-II is not the correct explanation of Statement - I.
(C) If Statement-I is true but Statement-II is false.
(D) If Statement- I is false but Statement-II is true.
Q. 23 Statement I: The equation
$\sec ^{-1} x+\cot ^{-1} x<\frac{-\pi}{2}$ has no solution.

Statement II : $\sec \mathrm{x}$ is not defined at $\frac{\pi}{2}$.
Q. 24 Statement I : The equation $\sin ^{-1} \mathrm{x}=\cos ^{-1} \mathrm{x}$ has one and only one solution.

Statement II : The equation $\tan ^{-1} \mathbf{x}=1$ has only one solution.
Q. 25 Statement I : $\sin ^{-1} \sin \mathrm{x} \neq \sin \sin ^{-1} \mathrm{x}$, if $-1 \leq \mathrm{x} \leq 1$

Statement II : $\sin \theta$ and $\sin ^{-1} \theta$ are different functions
Q. 26 Statement I : Equation $2 \sin ^{-1} x+3 \sin ^{-1} y=\frac{5 \pi}{2}$ and $y=p x-5$ hold simultaneously when p is equal to 6 .

Statement II : The range of $\sin ^{-1} \mathbf{x}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
Q. 27 Statement I : The maximum value or $\sin ^{-1} x+\operatorname{cosec}^{-1} x+\cos ^{-1} x+\sec ^{-1} x+\tan ^{-1} x$ is $\frac{3 \pi}{2}$

Statement II : $\sin ^{-1} \mathbf{x}+\cos ^{-1} \mathbf{x}=\frac{\pi}{2}$ and $\sec ^{-1} \mathbf{x}+\operatorname{cosec}^{-1} \mathbf{x}=\frac{\pi}{2}$

Passage based Questions

Passage

Every bijection $f: A \rightarrow B$ there exists a bijection $g: B \rightarrow A$ defined by $g(y)=x$ if and only if $f(x)=y$. The function $g: B \rightarrow A$ is called the inverse of function $f: A \rightarrow B$ and is denoted by f^{-1}.
Q. 28 The value of $\cos \left[\tan ^{-1} \tan 2\right]$ is -
(A) $\frac{1}{\sqrt{5}}$
(B) $-\frac{1}{\sqrt{5}}$
(C) $\cos 2$
(D) $-\cos 2$
Q. 29 If $\pi \leq x \leq 2 \pi$ then $\cos ^{-1} \cos x$ is equal to -
(A) x
(B) $-x$
(C) $2 \pi+x$
(D) $2 \pi-x$
Q. 30 If $x+\frac{1}{x}=2$, the principal value of $\sin ^{-1} x$ is -
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) π
(D) $\frac{3 \pi}{2}$

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A	B	C	C	B	A	A	A	B	A
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	B	B	C	B	A	A	C	C	D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	A	D	B	B	D	A	D	D	D	B

