Daily Practice Problems

MATHEMATHICS

Topic: Maxima \& Minima

Q. $1 \quad f(c)$ is a maximum value of $f(x)$ if -
(A) $\mathrm{f}^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})>0$
(B) $\mathrm{f}^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}$ (c) <0
(C) $\mathrm{f}^{\prime}(\mathrm{c}) \neq 0, \mathrm{f}^{\prime \prime}(\mathrm{c})=0$
(D) $\mathrm{f}^{\prime}(\mathrm{c})<0, \mathrm{f}^{\prime \prime}$ (c) >0
Q. $2 f(c)$ is a minimum value of $f(x)$ if -
(A) $f^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}(\mathrm{c})>0$
(B) $\mathrm{f}^{\prime}(\mathrm{c})=0, \mathrm{f}^{\prime \prime}$ (c) <0
(C) $f^{\prime}(c) \neq 0, f^{\prime \prime}(c)=0$
(D) f^{\prime} (c) $<0, \mathrm{f}^{\prime \prime}$ (c) >0
Q. $3 f(c)$ is a maximum value of $f(x)$ when at $x=c$ -
(A) $f^{\prime}(x)$ changes sign from $+v e$ to -ve
(B) $f^{\prime}(x)$ changes sign from $-v e$ to $+v e$
(C) $f^{\prime}(x)$ does not change sign
(D) $\mathrm{f}^{\prime}(\mathrm{x})$ is zero
Q. $4 f(c)$ is a minimum value of $f(x)$ when at $x=c$ -
(A) $f^{\prime}(x)$ changes sign $+v e$ to $-v e$
(B) $f^{\prime}(x)$ changes sign from -ve to +ve
(C) $f^{\prime}(x)$ does not change sign
(D) $f^{\prime}(x)$ is zero
Q. 5 The correct statement is -
(A) $f(c)$ is an extreme value of $f(x)$ if $f^{\prime}(c)=0$
(B) If $f(c)$ is an extreme value of $f(x)$ then $f^{\prime}(c)=0$
(C) If $f^{\prime}(c)=0$ then $f(c)$ is an extreme value of $f(x)$
(D) All the above statements are incorrect
Q. 6 If for a function $f(x), f^{\prime}(a)=0=f^{\prime \prime}(a)=\ldots . .=f^{n-1}(a)$ but $f^{n}(a) \neq 0$ then at $x=a, f(x)$ is minimum if -
(A) n is even and $f^{n}(a)>0$
(B) n is odd and $f^{n}(a)>0$
(C) n is even and $f^{n}(a)<0$
(D) n is odd and $\mathrm{f}^{\mathrm{n}}(\mathrm{a})<0$
Q. 7 The point of maxima of $\sec x$ is -
(A) $x=0$
(B) $x=\pi / 2$
(C) $x=\pi$
(D) $x=3 \pi / 2$
Q. $8 \quad x^{3}-3 x+4$ is minimum at -
(A) $x=1$
(B) $x=-1$
(C) $x=0$
(D) No where
Q. 9 The maximum value of $2 x^{3}-9 x^{2}+100$ is -
(A) 0
(B) 100
(C) 3
(D) 30
Q. 10 If $f(x)=x^{3}-k x+7$ is maximum at $x=-1$, then the value of k is -
(A) 3
(B) 6
(C) -3
(D) -6
Q. 11 Which of the following function has no extreme point-
(A) 2^{x}
(B) $[x]$
(C) $\log _{10} x$
(D) All these functions
Q. 12 If for a function $f(x), f^{\prime}(a)=0=f^{\prime \prime}(a)=\ldots .=f^{n-1}(a)$ but $f^{n}(a) \neq 0$ then at $x=a, f(x)$ is maximum if -
(A) n is even and $f^{n}(a)>0$
(B) n is odd and $f^{n}(a)>0$
(C) n is even and $f^{n}(a)<0$
(D) n is odd and $f^{n}(a)<0$
Q. 13 The maximum value of $5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$ is -
(A) 5
(B) 10
(C) 11
(D) -1
Q. 14 The function $f(x)=\sum_{K=1}^{5}(x-K)^{2}$ assumes minimum value for x given by
(A) 5
(B) 3
(C) $5 / 2$
(D) 2
Q. 15 If $f(x)=x^{3}-3 x^{2}+3 x+7$, then -
(A) $f(x)$ has a maximum at $x=1$
(B) $f(x)$ has a minimum at $x=1$
(C) $f(x)$ has a point of inflexion at $x=1$
(D) None of these
Q. $16 \operatorname{In}[0,2]$ the point of maxima of $3 x^{4}-2 x^{3}-6 x^{2}+6 x+1$ is -
(A) $x=0$
(B) $x=1$
(C) $x=1 / 2$
(D) Does not exist
Q. 17 If $f^{\prime}(c)$ changes sign from negative to positive as \times passes through c, then -
$(A) f(c)$ is neither a maximum nor a minimum value of $f(x)$
(B) $f(c)$ is a maximum value of $f(x)$
(C) $f(c)$ is a minimum value of $f(x)$
(D) $f(c)$ is either a maximum or a minimum value of $f(x)$
Q. 18 If $f^{\prime}(c)$ changes sign from positive to negative as x passes through c, then,
(A) $f(c)$ is neither a maximum nor a minimum value of $f(x)$
(B) $f(c)$ is a maximum value of $f(x)$
(C) $f(c)$ is a minimum value of $f(x)$
(D) $f(c)$ is either a maximum or minimum value of $f(x)$
Q. 19 If $f^{\prime}(c)<0$ and $f^{\prime \prime}(c)>0$, then at $x=c, f(x)$ is -
(A) maximum
(B) minimum
(C) neither maximum nor minimum
(D) either maximum or minimum
Q. 20 If for a function $f(x), f^{\prime}(b)=0, f^{\prime \prime}(b)=0, f^{\prime \prime \prime}(b)>0$, then $x=b$ is -
(A) a maximum point
(B) a minimum point
(C) an extreme point
(D) not an extreme point
Q. 21 The maximum height of the curve $y=6 \cos x-8 \sin x$ above x axis is-
(A) 5
(B) 10
(C) 15
(D) None of these
Q. 22 The minimum value of $a \sec x+b \operatorname{cosec} x, 0<a<b, 0<x<\pi / 2$ is =
(A) $a+b$
(B) $a^{2 / 3}+b^{2 / 3}$
(C) $\left(a^{2 / 3}+b^{2 / 3}\right)^{3 / 2}$
(D) None of these
Q. 23 The minimum value of $\frac{x}{\log x}(x>0)$ is -
(A) e
(B) $1 / \mathrm{e}$
(C) 0
(D) Does not exist
Q. 24 For what value of $x, x^{2} \log (1 / x)$ is maximum-
(A) $e^{-1 / 2}$
(B) $e^{1 / 2}$
(C) e
(D) e^{-1}
Q. 25 For what value of k, the function:
$f(x)=k x^{2}+\frac{2 k^{2}-81}{2} x-12$, is maximum at
$x=9 / 4$
(A) $9 / 2$
(B) -9
(C) $-9 / 2$
(D) 9
Q. 26 The greatest value of the function
$f(x)=\cos \left[x e^{[x]}+2 x^{2}-x\right],-1<x<\infty$ is-
(A) -1
(B) 1
(C) 0
(D) None of these
Q. 27 For $f(x)=\sqrt{3} \sin x+3 \cos x$, the point $x=\pi / 6$ is -
(A) a local maximum
(B) a local minimum
(C) None of these
(D) a point of inflexion
Q. 28 Which of the following functions has maximum or minimum value -
(A) $\sinh x$
(B) $\cosh x$
(C) $\tanh x$
(D) None of these
Q. 29 The maximum value of $5 \sin \theta+3 \sin (\theta+\pi / 3)+3$ is -
(A) 11
(B) 12
(C) 10
(D) 9
Q. 30 The maximum value of $(x-2)(x-3)^{2}$ is-
(A) $2 / 27$
(B) $1 / 27$
(C) $4 / 27$
(D) $5 / 27$

| Que. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ans. | B | A | A | B | B | A | C | A | B | A |
| Que. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Ans. | D | C | B | B | C | C | C | B | C | D |
| Que. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Ans. | B | C | A | A | B | B | A | B | C | C |

