Daily Practice Problems

PHYSICS

Topic: Magnetism

Q. 1 A magnet is broken into three pieces in length. The strength of the new poles is the strength of the poles of original magnet -
(A) the same as
(B) one half
(C) double
(D) one third
Q. 2 Magnetic field produced by electrons in atoms and molecules is due to their -
(A) spin motion only
(B) orbital motion only
(C) spin and orbital motion both
(D) neither spin nor orbital motion.
Q. 3 A steel wire of length ℓ has a magnetic moment M. It is then bent into a semicircular arc. The new magnetic moment is -
(A) M
(B) $2 \mathrm{M} / \pi$
(C) M / ℓ
(D) $\mathrm{M} \propto \ell$
Q. 4 Two identical thin bar magnets each of length ℓ and pole strength m are placed at right angles to each other, with north pole of one touching south pole of the other, then the magnetic momenta of the system is -
(A) $1 \mathrm{~m} \ell$
(B) $2 \mathrm{~m} \ell$
(C) $\sqrt{2} \mathrm{~m} \ell$
(D) $\mathrm{m} \ell / 2$.
Q. 5 Magnetic field due to a bar magnet at a distance 'r' from centre. (Angle between $\overrightarrow{\mathrm{r}}$ and $\overrightarrow{\mathrm{M}}$ is θ)
(A) $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M} \cos \theta}{\mathrm{r}^{3}}$
(C) $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M} \sqrt{1+4 \cos ^{2} \theta}}{\mathrm{r}^{3}}$
(B) $\frac{\mu_{0}}{4 \pi} \frac{\mathrm{M} \sin \theta}{\mathrm{r}^{3}}$
(D) $\frac{\mu_{0} \mathrm{M}}{4 \pi \mathrm{r}^{3}} \sqrt{1+3 \cos ^{2} \theta}$
Q. 6 The ratio of magnetic potentials due to magnetic dipole in the end on position to that in broadside on position for the same distance from it is -
(A) zero
(B) ∞
(C) 1
(D) 2
Q. 7 The magnetic potential at a point distant 10 cm from the middle point of a magnetic dipole on a line incline at an angle of 600 with the axis is 3 e.m.u. Then the magnetic moment of magnet is -
(A) $600 \mathrm{ab}-\mathrm{amp} \mathrm{cm}^{2}$
(B) $300 \mathrm{ab}-\mathrm{amp} \mathrm{cm}{ }^{2}$
(C) $150 \mathrm{ab}-\mathrm{amp} \mathrm{cm}^{2}$
(D) $300 \sqrt{3} \mathrm{ab}-\mathrm{amp} \mathrm{cm}^{2}$
Q. 8 A thin bar magnet of length 2ℓ and breadth $2 b$ pole strength p and magnetic moment M is divided into four equal pars with length and breadth of each part being half of original magnet. Then the pole strength of each part is-
(A) p
(B) $p / 2$
(C) $2 p$
(D) $p / 4$
Q. 9 In the above question, magnetic moment of each part is -
(A) $M / 4$
(B) M
(C) $M / 2$
(D) 2 M
Q. 10 When a magnet is heated, its strength -
(A) always decreases
(C) may increase or decrease
(B) always increases
(D) remains unaffected
Q. 11 A magnetic needle is kept in a non-uniform magnetic field. It experiences -
(A) a force and a torque
(B) a force but not a torque
(C) a torque but not a force
(D) neither a force nor a torque
Q. 12 Two points A and B are situated at a distance x and $2 x$ respectively from the nearer pole of a magnet 2 cm long. The ratio of magnetic field at A and B is -
(A) $4: 1$ exactly
(B) $4: 1$ approximately
(C) $8: 1$ approximately
(D) $1: 1$ approximately
Q. 13 The magnet of pole strength m and magnetic moment M is cut into two pieces along its axis. Its pole strength and magnetic moment now becomes -
(A) $\frac{\mathrm{m}}{2}, \frac{\mathrm{M}}{2}$
(B) $m, \frac{M}{2}$
(C) $\frac{\mathrm{m}}{2}, \mathrm{M}$
(D) m, M
Q. 14 The distance between two magnetic poles is doubled and their pole strength is also doubled. Force between them -
(A) remains unchanged
(B) becomes twice
(C) becomes 8 times
(D) becomes 4 times
Q. 15 A large magnet is broken into two pieces so that their lengths are in the ratio $2: 1$. The pole strengths of the two pieces will have ratio -
(A) $2: 1$
(B) $1: 2$
(C) $4: 1$
(D) $1: 1$
Q. 16 A circular coil of radius 4 cm having 50 turns carries a current of 2 A . It is placed in uniform magnetic field of intensity of $0.1 \mathrm{Weber} / \mathrm{m}^{2}$. The work done to rotate the coil from the equilibrium position by 180° is -
(A) 0.1 J
(B) 0.2 J
(C) 0.4 J
(D) 0.8 J
Q. 17 A circular coil of radius 4 cm having 20 turns carries a current of 3 A . It is placed in a magnetic field of intensity $0.5 \mathrm{Weber} / \mathrm{m}^{2}$. The potential energy of the magnetic dipole of the coil is -
(A) -0.15 J
(B) -0.3 J
(C) -0.45 J
(D) -0.6 J
Q. 18 A magnetic dipole is placed at right angles to the direction of lines of force of magnetic induction B. If it is rotated through an angle of 180°, then the work done is -
(A) MB
(B) 2 MB
(C) -2 MB
(D) Zero
Q. 19 A magnetic field exerts no force on -
(A) a magnet
(B) an unmagnetised iron bar
(C) a moving charge
(D) a charge at rest
Q. 20 The line joining a point to the centre of a short magnet makes angles θ with the axis. Potential at a point distant d from the centre of magnet, on this line is -
(A) $\frac{\mu_{0} M \sin \theta}{4 \pi d^{2}}$
(B) $\frac{\mu_{0} M \cos \theta}{4 \pi d^{2}}$
(C) $\frac{\mu_{0} M}{4 \pi d^{3}}$
(D) none of these
Q. 21 Potential at any point on equatorial line of dipole is -
(A) $\mu_{0} M / 4 \pi d^{2}$
(B) $\mu_{0} \mathrm{M} / 4 \pi d^{3}$
(C) zero
(D) none of these
Q. 22 The value of angle of dip is zero at the magnetic equator because on it -
(A) V and H are equal
(B) the value of V and H is zero
(C) the value of V is zero
(D) the value of H is zero
Q. 23 The error in measuring the current with a tangent galvanometer is minimum when the deflection is about -
(A) 0°
(B) 30°
(C) 45°
(D) 60°
Q. 24 The needle of a dip circle when placed at a geomagnetic pole stays along -
(A) South north direction only
(B) East west direction only
(C) Vertical direction
(D) None of the above
Q. 25 Earth's magnetic field always has a horizontal component except at -
(A) equator
(B) magnetic pole
(C) a latitude of 60°
(D) an inclination of 60°
Q. 26 The lines of force due to earth's horizontal magnetic field are -
(A) parallel and straight
(B) concentric circle
(C) elliptical
(D) curved lines
Q. 27 The vertical component of earth's magnetic field is zero at -
(A) magnetic equator
(B) magnetic pole
(C) geographic poles
(D) at 90° latitude
Q. 28 A dip needle which is free to move in a vertical plane perpendicular to magnetic meridian will remain-
(A) horizontal
(C) neither horizontal nor vertical
(B) vertical
(D) nothing can be said
Q. 29 The angles of dip at the poles and the equator respectively are -
(A) $30^{\circ}, 60^{\circ}$
(B) $90^{\circ}, 0^{\circ}$
(C) $30^{\circ}, 90^{\circ}$
(D) $0^{\circ}, 0^{\circ}$
Q. 30 The angle of dip at a certain place where the horizontal and vertical components of the earth's magnetic field are equal is -
(A) 30°
(B) 75°
(C) 60°
(D) 45°

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A	C	B	C	D	B	A	B	A	A
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	A	C	A	A	D	A	A	D	D	B
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	A	C	C	C	B	A	A	B	B	D

