Daily Practice Problems

PHYSICS

Topic: Magnetism

- Q.1 A magnet is broken into three pieces in length. The strength of the new poles is the strength of the poles of original magnet -
 - (A) the same as
- (B) one half
- (C) double
- (D) one third
- Q.2 Magnetic field produced by electrons in atoms and molecules is due to their -
 - (A) spin motion only
 - (B) orbital motion only
 - (C) spin and orbital motion both
 - (D) neither spin nor orbital motion.
- **Q.3** A steel wire of length ℓ has a magnetic moment M. It is then bent into a semicircular arc. The new magnetic moment is -
 - (A) M
- (B) 2 M/ π
- (C) M/ℓ
- (D) M $\propto \ell$
- **Q.4** Two identical thin bar magnets each of length ℓ and pole strength m are placed at right angles to each other, with north pole of one touching south pole of the other, then the magnetic momenta of the system is -
 - (A) 1 m ℓ
- (B) $2 \,\mathrm{m}\ell$
- (C) $\sqrt{2}$ m ℓ
- (D) $m\ell/2$.
- **Q.5** Magnetic field due to a bar magnet at a distance 'r' from centre. (Angle between \vec{r} and \vec{M} is θ)
 - (A) $\frac{\mu_0}{4\pi} \frac{M\cos\theta}{r^3}$
- (C) $\frac{\mu_0}{4\pi} \frac{M\sqrt{1+4\cos^2\theta}}{r^3}$
- (B) $\frac{\mu_0}{4\pi} \, \frac{M \sin \theta}{r^3}$
- (D) $\frac{\mu_0 M}{4\pi r^3} \sqrt{1 + 3\cos^2 \theta}$

Q.6	The ratio of magnetic potentials due to magnetic dipole in the end on position to that in broadside on position for the same distance from it is -						
	. ,	B) ∞ D) 2					
Q.7	The magnetic potential at a point distant 10 cm from the middle point of a magnetic dipole on a line incline at an angle of 60° with the axis is 3 e.m.u. Then the magnetic moment of magnet is -						
	(A) 600 ab - amp cm ²						
	(B) 300 ab - amp cm ²						
	(C) 150 ab - amp cm ²						
	(D) 300 $\sqrt{3}$ ab - a	amp cm ²					
Q.8	A thin bar magnet of length 2ℓ and breadth 2b pole strength p and magnetic moment M is divided into four equal pars with length and breadth of each part being half of original magnet. Then the pole strength of each part is-						
	(A) p	(B) p/2					
	(C) 2p	(D) p/4					
Q.9	In the above que	estion, magnetic moment of each part is -					
	(A) M/4	(B) M					
	(C) M/2	(D) 2M					
Q.10	When a magnet is heated, its strength –						
	(A) always decre	eases (C) may increase or decrease					
	(B) always incre	ases (D) remains unaffected					
Q.11	A magnetic need	dle is kept in a non–uniform magnetic field. It experiences –					
	(A) a force and a torque						
	(B) a force but n	ot a torque					
	(C) a torque but not a force						
	(D) neither a force nor a torque						

- Q.12 Two points A and B are situated at a distance x and 2 x respectively from the nearer pole of a magnet 2 cm long. The ratio of magnetic field at A and B is
 - (A) 4:1 exactly
 - (B) 4: 1 approximately
 - (C) 8: 1 approximately
 - (D) 1:1 approximately
- Q.13 The magnet of pole strength m and magnetic moment M is cut into two pieces along its axis. Its pole strength and magnetic moment now becomes
 - (A) $\frac{m}{2}$, $\frac{M}{2}$
- (B) m, $\frac{M}{2}$
- (C) $\frac{m}{2}$, M
- (D) m, M
- Q.14 The distance between two magnetic poles is doubled and their pole strength is also doubled. Force between them
 - (A) remains unchanged

(B) becomes twice

(C) becomes 8 times

- (D) becomes 4 times
- **Q.15** A large magnet is broken into two pieces so that their lengths are in the ratio 2 : 1. The pole strengths of the two pieces will have ratio -
 - (A) 2:1
- (B) 1:2
- (C) 4:1
- (D) 1:1
- Q.16 A circular coil of radius 4 cm having 50 turns carries a current of 2A. It is placed in uniform magnetic field of intensity of 0.1 Weber/m². The work done to rotate the coil from the equilibrium position by 180° is -
 - (A) 0.1 J
- (B) 0.2 J
- (C) 0.4 J
- (D) 0.8 J
- Q.17 A circular coil of radius 4 cm having 20 turns carries a current of 3 A. It is placed in a magnetic field of intensity 0.5 Weber/m². The potential energy of the magnetic dipole of the coil is
 - (A) 0.15 J
- (B) 0.3 J
- (C) 0.45 J
- (D) 0.6 J

- **Q.18** A magnetic dipole is placed at right angles to the direction of lines of force of magnetic induction B. If it is rotated through an angle of 180°, then the work done is -
 - (A) MB
- (B) 2 MB
- (C) 2 MB
- (D) Zero
- Q.19 A magnetic field exerts no force on -
 - (A) a magnet
 - (B) an unmagnetised iron bar
 - (C) a moving charge
 - (D) a charge at rest
- **Q.20** The line joining a point to the centre of a short magnet makes angles θ with the axis. Potential at a point distant d from the centre of magnet, on this line is -
 - (A) $\frac{\mu_0 M \sin \theta}{4 \pi d^2}$
- (B) $\frac{\mu_0 \text{ M} \cos \theta}{4\pi d^2}$
- (C) $\frac{\mu_0 M}{4\pi d^3}$
- (D) none of these
- **Q.21** Potential at any point on equatorial line of dipole is -
 - (A) μ_0 M/4 π d²
 - (B) μ_0 M/4 π d³
 - (C) zero
 - (D) none of these
- Q.22 The value of angle of dip is zero at the magnetic equator because on it -
 - (A) V and H are equal
 - (B) the value of V and H is zero
 - (C) the value of V is zero
 - (D) the value of H is zero

Q.23	The error in measuring the current with a tangent galvanometer is minimum when the deflection is about -							
	(A) 0°	(B) 30°						
	(C) 45°	(D) 60°						
Q.24	The needle of a dip circle when placed at a geomagnetic pole stays along -							
	(A) South north direction only							
	(B) East west direction only							
	(C) Vertical direction							
	(D) None of the abov	e						
Q.25	Earth's magnetic field always has a horizontal component except at -							
	(A) equator							
	(B) magnetic pole							
	(C) a latitude of 60°							
	(D) an inclination of 60°							
Q.26	The lines of force due to earth's horizontal magnetic field are -							
	(A) parallel and straight							
	(B) concentric circle							
	(C) elliptical							
	(D) curved lines							
Q.27	The vertical component of earth's magnetic field is zero at -							
	(A) magnetic equator	(B) magnetic pole						
	(C) geographic poles	(D) at 90° latitude						
Q.28	A dip needle which is free to move in a vertical plane perpendicular to magnetic meridian will remain							
	(A) horizontal	(C) neither horizontal nor vertical						
	(B) vertical	(D) nothing can be said						

- Q.29 The angles of dip at the poles and the equator respectively are -
 - (A) 30°, 60°
- (B) 90°, 0°
- (C) 30°, 90°
- (D) 0°, 0°
- **Q.30** The angle of dip at a certain place where the horizontal and vertical components of the earth's magnetic field are equal is -
 - (A) 30°
- (B) 75°
- (C) 60°
- (D) 45°

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	Α	С	В	С	D	В	А	В	А	Α
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	А	С	А	А	D	А	А	D	D	В
Que.	21	22	23	24 A	25	26	27	28	29	30
Ans.	А	С	С	С	В	Α	Α	В	В	D