Daily Practice Problems

NEET PHYSICS

Topic - Logic Gates

1. The output of the given logic gate is 1 when inputs A, B and C are such that :-
(1) $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1$
(2) $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=0$
(3) $\mathrm{A}=\mathrm{B}=\mathrm{C}=0$
(4) $\mathrm{A}=\mathrm{B}=\mathrm{C}=1$
2. The truth table given below is for :-
(1) OR gate
(2) AND gate
(3) XNOR gate
(4) XOR gate

A	B	Y
O	O	1
O	1	0
1	0	0
1	1	1

3. The arrangement shown in figure performs the logic function of $a / a n$ gate :-
(1) OR
(2) XOR
(3) NAND

(4) AND
4. The output of gate is low when at least one of its input is high. This is true for :-
(1) NOR
(2) OR
(3) AND
(4) NAND
5. A two inputed XOR gate produces an output high only when its both inputs are :-
(1) same
(2) different
(3) low
(4) high
6. You are given two circuits as shown in following figure. The logic operation carried out by the two circuit are respectively :-

(1) AND, OR
(2) OR, AND
(3) NAND, OR
(4) NOR, AND
7. Which of the following Boolean expression is not correct :-
(1) $\overline{\bar{A}} \cdot \bar{B}=A+B$
(2) $\overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}}=\mathrm{A} \cdot \mathrm{B}$
(3) $\overline{\overline{\text { A.B }}}=A \cdot B$
(4) $\overline{1}+\overline{1}=1$
8. In Boolean algebra, which of the following is not equal to zero :-
(1) $A . \bar{A}$
(2) A. 0
(3) $\overline{\mathrm{A}+\overline{\mathrm{A}}}$
(4) $\overline{\overline{\mathrm{A}} .0}$
9. Digital circuits can be made by repetitive use of :-
(1) OR gate
(2) AND gate
(3) NOT gate
(4) NAND gate
10. Which of the following relation is valid in Boolean algebra :-
(1) $A+\bar{A}=0$
(2) $\mathrm{A}+\mathrm{A}=2 \mathrm{~A}$
(3) $\mathrm{A}+\overline{\mathrm{A}}=1$
(4) $\mathrm{A}+\overline{\mathrm{A}}=\mathrm{A}$
11. In Boolean algebra $\mathrm{Y}=\mathrm{A}+\mathrm{B}$ means that :-
(1) Y is the sum of A and B
(2) Y exists when either A or B or both A and B exist
(3) Y exists only when both A and B exist
(4) Y exists when either A or B exists but not when both A and B exist
12. Given below are four logic symbols. Those for OR, NOR and NAND gates are respectively :-
(a)

(b)

(c)

(d)

(1) a, d, c
(2) d, a, b
(3) a, c, d
(4) d, b, a
13. The truth table shown below is for which of the following gates :-
(1) XNOR
(2) AND
(3) XOR
(4) NOR

A	B	Y
1	1	1
O	1	0
1	0	0
0	0	1

14. When all the inputs of a NAND gate are connected together, the resulting circuit is :-
(1) a NOT gate
(2) an AND gate
(3) an OR gate
(4) a NOR gate
15. Which of the following pairs are universal gates :-
(1) NAND, NOT
(2) NAND, AND
(3) NOR, OR
(4) NAND, NOR
16. A NAND gate followed by a NOT gate is :-
(1) an OR gate
(2) an AND gate
(3) a NOR gate
(4) a XOR gate
17. The NOR gate is logically equivalent to an OR gate followed by :-
(1) an inverter
(2) a NOR gate
(3) a NAND gate
(4) All of above
18. The output of a two input NOR gate is in state 1 when :-
(1) either input terminals is at 0 state
(2) either input terminals is at 1 state
(3) both input terminals are at 0 state
(4) both input terminals are at 1 state
19. 'Output is LOW if and only if all the inputs are HIGH' Indicate the logic gate for which the above statement in ture :-
(1) AND
(2) OR
(3) NOR
(4) NAND
20. The truth table shown is of :-
(1) NAND gate
(2) NOR gate
(3) XOR gate
(4) XNOR gate

A	B	Y
O	O	0
O	1	1
1	0	1
1	1	0

21. The output Y of the combination of gates shown is equal to :-
(1) A
(2) \bar{A}
(3) $\mathrm{A}+\mathrm{B}$

(4) AB
22. Which of the following relations is valid for Boolean algebra :-
(1) $A+A=A$
(2) $\mathrm{A} . \mathrm{A}=\mathrm{A}$
(3) $\mathrm{A} \cdot \overline{\mathrm{A}}=0$
(4) all
23. What would be the output of the circuit whose Boolean expression $Y=A \bar{B}+A B$ when $A=1$, $\mathrm{B}=0$:-
(1) 1
(2) 0
(3) both (1) \& (2)
(4) none of these
24. The diagram of a logic circuit is given below. The output of the circuit is represented by :-

(1) $\mathrm{W} .(\mathrm{X}+\mathrm{Y})$
(2) X. (X.Y)
(3) $\mathrm{W}+(\mathrm{X}+\mathrm{Y})$
(4) $\mathrm{W}+(\mathrm{X} . \mathrm{Y})$
25. The following configuration of gates is equivalent to :-

(1) NAND
(2) OR
(3) XOR
(4) NOR
26. To get an output 1 , the input ABC should be :-

(1) 101
(2) 100
(3) 110
(4) 010
27. The output of 2 input gate is 1 only if its inputs are equal. It is true for :-
(1) NAND
(2) AND
(3) EX-NOR
(4) EX-OR
28. The circuit-shown here is logically equivalent to :-

(1) OR gate
(2) AND gate
(3) NOT gate
(4) NAND gate
29. A two-input NAND gate is followed by a singleinput NOR gate. This logic circuit will function as :-
(1) an AND gate
(2) an OR gate
(3) a NOT gate
(4) a NOR gate
30. Which of the following will have an ouput of 1 :-
(a)

(b)

(c)

(1) a
(2) c
(d)

(3) b
(4) d

Answer Key

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	3	1	1	2	1	4	4	4	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	1	1	4	2	4	3	4	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	4	1	4	3	1	3	1	1	2

