

Daily Practice Problems

NEET PHYSICS

Topic - Logic Gates

- 1. The output of the given logic gate is 1 when inputs A, B and C are such that :-
 - (1) A = 1, B = 0, C = 1
 - (2) A = 1, B = 1, C = 0
 - (3) A = B = C = 0
 - (4) A = B = C = 1
- 2. The truth table given below is for :-
 - (1) OR gate
 - (2) AND gate
 - (3) XNOR gate

(4) XOR gate

- A В Y 1 0 0 0 1 0 1 0 0 1 1 1
- 3. The arrangement shown in figure performs the logic function of a/an gate :-
 - (1) OR

(2) XOR (3) NAND

- (4) AND
- 4. The output of gate is low when at least one of its input is high. This is true for :-

(1) NOR	(2) OR
(3) AND	(4) NAND

- 5. A two inputed XOR gate produces an output high only when its both inputs are :-
 - (1) same (2) different (3) low
 - (4) high
- 6. You are given two circuits as shown in following figure. The logic operation carried out by the two circuit are respectively :-

- (1) AND, OR (2) OR, AND (3) NAND, OR (4) NOR, AND
- 7. Which of the following Boolean expression is not correct :-
 - (1) $\overline{\overline{A}}.\overline{\overline{B}} = A + B$ (2) $\overline{\overline{A}} + \overline{\overline{B}} = A \cdot B$
 - (4) $\overline{1} + \overline{1} = 1$ (3) $\overline{\overline{AB}} = AB$
- 8. In Boolean algebra, which of the following is not equal to zero :-

(1) A.Ā	(2) A.O
(3) $\overline{A + \overline{A}}$	(4) <u>Ā.0</u>

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

- 9. Digital circuits can be made by repetitive use of :
 (1) OR gate
 (2) AND gate

 (3) NOT gate
 (4) NAND gate
- Which of the following relation is valid in Boolean algebra :-
 - (1) $A + \overline{A} = 0$ (2) A + A = 2A
 - $(3) \ A + \overline{A} = 1 \qquad \qquad (4) \ A + \overline{A} = A$
- 11. In Boolean algebra Y = A + B means that :-(1) Y is the sum of A and B
 - (2) Y exists when either A or B or both A and B exist
 - (3) Y exists only when both A and B exist
 - (4) Y exists when either A or B exists but not when both A and B exist
- 12. Given below are four logic symbols. Those for OR, NOR and NAND gates are respectively :--

13. The truth table shown below is for which of the following gates :-

(1) XNOR	A	В	Y
	1	1	1
(2) AND	0	1	0
(3) XOR	1	0	0
(4) NOR	0	0	1

- **14.** When all the inputs of a NAND gate are connected together, the resulting circuit is :-
 - (1) a NOT gate(2) an AND gate(3) an OR gate(4) a NOR gate

- 15. Which of the following pairs are universal gates :(1) NAND, NOT
 (2) NAND, AND
 (3) NOR, OR
 (4) NAND, NOR
- 16. A NAND gate followed by a NOT gate is :(1) an OR gate
 (2) an AND gate
 (3) a NOR gate
 (4) a XOR gate
- The NOR gate is logically equivalent to an OR gate followed by :-

(1) an inverter	(2) a NOR gate
(3) a NAND gate	(4) All of above

- 18. The output of a two input NOR gate is in state 1 when :-
 - (1) either input terminals is at 0 state
 - (2) either input terminals is at 1 state
 - (3) both input terminals are at 0 state
 - (4) both input terminals are at 1 state
- 19. 'Output is LOW if and only if all the inputs are HIGH' Indicate the logic gate for which the above statement in ture :-

(2) OR
(4) NAND

20. The truth table shown is of :-

(1) NAND gate	A	В	Y
	0	0	0
(2) NOR gate	0	1	1
(3) XOR gate	1	0	1
(4) XNOR gate	1	1	0

21. The output Y of the combination of gates shown is equal to :-

22. Which of the following relations is valid for Boolean algebra :-

(1) $A + A = A$	(2) A. A = A			
(3) A. $\bar{A} = 0$	(4) all			

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

- 23. What would be the output of the circuit whose Boolean expression $Y = A\overline{B} + AB$ when A = 1, B = 0 :-
 - (1) 1
 - (2) 0
 - (3) both (1) & (2)
 - (4) none of these
- **24.** The diagram of a logic circuit is given below. The output of the circuit is represented by :-

- (1) W. (X + Y) (2) X. (X,Y)(3) W + (X + Y) (4) W + (X,Y)
- **25.** The following configuration of gates is equivalent to :-

- (1) NAND (2) OR (3) XOR (4) NOR
- 26. To get an output 1, the input ABC should be :-

- 27. The output of 2 input gate is 1 only if its inputs are equal. It is true for :(1) NAND (2) AND (3) EX-NOR (4) EX-OR
- 28. The circuit-shown here is logically equivalent to :-

- (1) OR gate(3) NOT gate
- (2) AND gate(4) NAND gate
- **29.** A two-input NAND gate is followed by a singleinput NOR gate. This logic circuit will function as :-
 - (1) an AND gate(2) an OR gate(3) a NOT gate(4) a NOR gate

30. Which of the following will have an ouput of 1 :=

Answer Key

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	3	1	1	2	1	4	4	4	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	1	1	4	2	4	3	4	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	4	1	4	3	1	3	1	1	2

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.