

Daily Practice Problems

JEE PHYSICS

Topic: Waves

- **Q.1** If the value of Planck's constant is more than its present value then the De-Broglie wavelength associated with a material particle will be -
 - (A) more
 - (B) less
 - (C) same
 - (D) more for light particles and less for heavy particles
- Q.2 A moving car of 2000 kg mass and velocity of 30 m/sec has associated de-Broglie wavelength given is -
 - (A) 10^{-38} m (B) 6.62×10^{-34} m
 - (C) 1.1×10^{-38} m (D) 1.1×10^{-38} cm
- Q.3 A particle of rest mass m₀ moves with a speed c. The de-Broglie wavelength associated with it will be -
 - (A) zero (B) infinite
 - (C) $\frac{h}{m_0 c}$ (D) $\frac{m_0 c}{h}$
- Q.4 The wave associated with each moving material particle are -
 - (A) probability waves
 - (B) mechanical waves
 - (C) electromagnetic waves
 - (D) imaginary waves
- Q.5 The wave nature of electron was verified by -
 - (A) photoelectric effect
 - (B) Compton effect
 - (C) the incidence of electron on metallic surface
 - (D) diffraction of electron by crystal

www.aggarwaleducare.com

- Q.6 The waves associated with electrons revolving in various Bohr orbits in an atom are -
 - (A) transverse (B) longitudinal
 - (C) progressive (D) stationary
- **Q.7** The mass of a particle is m kg. If mass is increased nine times keeping its energy constant, then the de-Broblie wavelength associated with it will
 - (A) Remain unchanged (B) become half
 - (C) become one third (D) become nine times
- Q.8 The velocity at which the mass of a particle becomes twice its rest mass, will be -

(A)
$$\frac{2c}{3}$$
 (B) $\frac{c}{2}$ (C) $\frac{c\sqrt{3}}{2}$ (D) $\frac{3c}{4}$

- Q.9 The mass of electron varies with -
 - (A) Electron velocity
 - (B) The size of cathode ray tube
 - (C) Variation of g
 - (D) The size of electron
- Q.10 If E and p are the respective energy and momentum of a photon, then on reducing the wavelength of the photon,
 - (A) both p and E will decrease
 - (B) both p and E will increase
 - (C) p will increase but E will decrease
 - (D) p will decrease but E will increase
- Q.11 The momentum of photon of energy 1 MeV will approximately be -
 - (A) 10^{-22} Kg-m/s (B) 5×10^{-22} Kg-m/s
 - (C) 3×10^6 Kg-m/s (D) 0
- Q.12 The frequency of a photon of momentum p will be -
 - (A) $\frac{pc}{h}$ (B) $\frac{ph}{c}$ (C) $\frac{mh}{c}$ (D) $\frac{mc}{h}$

www.aggarwaleducare.com

Q.13 If the energy of a photon of light of frequency v is E and its momentum is P, then the velocity of light is –

(A) EP (B) E/P (C) P/E (D) 1/EP

- Q.14 The momentum of photon of wavelength 0.01 Å will be -
 - (A) h
 (B) 10⁻² h
 (C) 10¹² h
 (D) 10² h

Q.15 The energy of a photon (in eV) of wavelength 5000 Å will be -

(A) 2.48 eV	(B) 8.42 eV
(~) 2.70 CV	(D) 0.42 CV

- (C) zero (D) 4.82 eV
- **Q.16** The wavelength of a photon of momentum 6.6×10^{-24} Kg-m/s will be -

(A) 10 Å (B) 1 Å	
------------------	--

- (C) 100 Å (D) 1000 Å
- Q.17 The momentum of photon of frequency 10⁹ Hz will be -
 - (A) 31 Kg m/s (B) 7.3×10^{-21} Kg-m/s
 - (C) 2.2×10^{-33} Kg-m/s (D) 6.6×10^{-26} kg-m/s
- Q.18 Through what potential difference should an electron be accelerated so that its de Broglie wavelength become 0.4 Å –
 - (A) 9410 V (B) 94.10 V
 - (C) 9.140 V (D) 941.0 V
- **Q.19** The energy of an α -particle, whose de-broglie wavelength is 0.004 Å will be -

(A) 1270 eV	(B) 1200 KeV
-------------	--------------

- (C) 1200 MeV (D) 1200 GeV
- **Q.20** The study of diffraction of electrons from a target, gives the wavelength associated as 0.65Å. The energy of the electrons will be -
 - (A) 40eV (B) 100 eV

(C) 356 eV (D) 1000 eV

www.aggarwaleducare.com

Q.21 The energies of an photon and an electron of mass m are same. The ratio of wavelengths associated with them will be -

(A) $c\sqrt{E/2m}$ (B) $\sqrt{2mc/E}$

- (C) $c\sqrt{2m/E}$ (D) $\sqrt{E/2mc}$
- **Q.22** Two particles of mass m_1 and m_2 respectively are identically charged and are accelerated by same potential. If de-Broglie wavelength associated with them are λ_1 and λ_2 then -

(A)
$$\frac{\lambda_1}{\lambda_2} = \frac{m_2}{m_1}$$
 (B) $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{m_2}{m_1}}$

- (C) $\frac{\lambda_1}{\lambda_2} = \frac{m_1}{m_2}$ (D) $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{m_1}{m_2}}$
- **Q.23** An electron is 2000 times lighter than a proton. An electron and a proton are moving with such a velocity that de-Broglie wave associated with them is 1Å. The ratio of their K.E. will be -
 - (A) 1 : 2000 (B) 2000 : 1
 - (C) 1 : 1 (D) 1 : (4.0106)
- Q.24 A double slit interference experiment is performed by a beam of electrons of energy 100 eV and the fringe spacing is observed to be β. Now if the electrons energy is increased to 10 keV, then the fringe spacing -
 - (A) remains the same (B) becomes 10β
 - (C) becomes 100β (D) becomes $\beta/10$
- Q.25 The hydrogen atom emits a photon of 656.3 nm line. Find the momentum of the photon associated with it.
 - (A) 10^{-27} kg ms⁻¹ (B) 10^{-23} kg ms⁻¹
 - (C) 10^{-25} kg ms⁻¹ (D) none of these
- **Q.26** If E_1 , E_2 and E_3 are the respective kinetic energies of an electron, an alpha particle and a proton, each having the same de Broglie wavelength, then -
 - (A) $E_1 > E_3 > E_2$ (B) $E_2 > E_3 > E_1$
 - (C) $E_1 > E_2 > E_3$ (D) $E_1 = E_2 = E_3$

www.aggarwaleducare.com

- Q.27 The de-Broglie wavelength of a particle of mass m and charge e, accelerated through potential V will be -
 - (A) h/ $\sqrt{2\text{meV}}$ (B) $\sqrt{\text{hmeV}}$
 - (C) m/ $\sqrt{2heV}$ (D) None of the above
- **Q.28** The electron of a H-atom moves in nth orbit. If the length of the orbit is L and de-Broglie wavelength is λ , then the relation between them is -
 - (A) $L = \lambda/n$ (B) $\lambda = n/L$
 - (C) $L = n\lambda$ (D) $L = nh\lambda$
- **Q.29** If the momentum of electron is changed by P_m then the De Broglie wavelength associated with it changes by 0.50 % . The initial momentum of electron will be -

$\frac{P_m}{100}$	
	$\frac{P_m}{100}$

- (C) 200 P_m (D) 400 P_m
- **Q.30** When the momentum of a proton is changed by an amount P₀, the corresponding change in the de-Broglie wavelength is found to be 0.25%. Then the original momentum of the proton was -
 - (A) P₀ (B) 100 P₀

(C) $400 P_0$ (D) $4 P_0$

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	А	с	А	А	D	D	С	С	А	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	А	В	с	А	В	С	D	А	с
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	с	В	В	D	А	А	А	с	с	с

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.