

Daily Practice Problems

JEE PHYSICS

Topic: Rotational Motion

Q.1 A wheel starts rotating from rest and attains an angular velocity of 60 rad/sec in 5 seconds. The total angular displacement in radians will be-

(1) 60

(2)80

(3) 100

(4)150

Q.2 A body rotates at 300 rotations per minute. The value in radian of the angle described in 1 sec is-

(1)5

(2)5p

(3) 10

(4) 10p

Q.3 A chain couples and rotates two wheels in a bicycle. The radii of bigger and smaller wheels in a bicycle. The radii of bigger and smaller wheels are 0.5m and 0.1. respectively. The bigger wheel rotates at the rate of 200 rotations per minute, then the rate of rotation of smaller wheel will be -

(1) 1000 rpm

(2) 50/3 rpm

(3) 200 rmp

(4) 40 rpm

Q.4 If the position vector of a particle is

 $\hat{r} = (3\hat{i} + 4\hat{j})$ metre and its angular velocity is $\vec{\omega} = (\hat{j} + 2\hat{k})$ rad/sec then its linear velocity is (in m/s) -

 $(1) - (8\hat{i} - 6\hat{j} + 3\hat{k})$

(2) $(3\hat{i} + 6\hat{j} + 8\hat{k})$

(3) $-(3\hat{i} + 6\hat{j} + 6\hat{k})$

(4) $(6\hat{i} + 8\hat{j} + 3\hat{k})$

Q.5 A car is moving with a speed of 72 Km/hour. The diameter of its wheels is 50cm. If its wheels come to rest after 20 rotations as a result of application of brakes, then the angular retardation produced in the car will be -

(1) 25.5 Radians/sec²

(2) 0.25 Radians/sec²

(3) 2.55 Radians/sec²

(4)0

Q.6				n of 6 rad/sec ² and with 2 rad/se	c angula			
	velocity. If the radius of the circular path is 1m, its total acceleration in m/\sec^2 will be -							
	(1) 1	(2) 100						
	(3) 10	$(4) \sqrt{10}$						
Q.7		n rest under the effect of conds in radian will be?	f an angular accele	ration of 5 rad/sec 2 . The value o	f angula			
	(1) 10	(2) 20						
	$(3)20\pi$	(4) 50						
Q.8	When a body rotates	about an axis the quanti	ity which remains s	same for all its particles, is				
	(1) linear velocity	(2) angular velocity	(3) linear accelera	ation (4) angular momentum				
Q.9	A wheel of an engine executes 4800 revolutions per minute. Its angular velocity (in rad/sec) would be -							
	$(1)4800\pi$	(2) 2400π	(3) 160π	(4) 80π				
Q.10	A fan is rotating with	n a frequency 50Hz, its a	ngular speed would	d be -				
	(1) 50π rad/sec	(2) 200π rad,	/sec					
	(3) 100π rad/sec	(4) $\left(\frac{100}{\pi}\right)$ rad	/sec					
0.11	A narticle moves by 1	cm in 1 sec in a path of	radius 10cm. Its ar	ngular speed would be-	lue of angular			
V.	(1) 10º/sec	(2) 10 rad/sec	(3) 0.1 rad/sec	(4) 1 rad/sec				
Q.12	Two particles of mas	sses m_1 and m_2 comple	te one revolution o	of respective radii r_1 and r_2 in sa	ıme time			
	The ratio of their angular speeds would be							
	$(1) m_1 r_1^2 : m_2 r_2^2$	(2) r ₁ : r ₂						
	$(3) r_2 : r_1$	(4) 1:1						
Q.13	When a mass rotates	about any axis, the direc	ction of the angular	r velocity will be -				
	(1) towards radius		(2) towards the ta	angent to the orbit				
	(3) at an angle of 45º	to the plane of rotation	(4) along the dire	ction of axis of rotation				

Q.IT	If a rigid body a point	rotates 60º in 6	minutes the angular	velocity of the body is -				
	(1) 1/6 rad/s	(2) 3.14/18 ra	ad/s					
	(3) 3.14/180×6 rad/s	(4) None of th	ese					
Q.15	A particle, moving ald diameter of the path is		path has equal magni	itudes of linear and angular acceler	ation. The			
	(1) 1	(2) π	(3) 2	(4) 2π				
Q.16	The moment of inertia	of a body depe	ends upon -					
	(1) mass only		(2) angular v	relocity only				
Q.17	(3) distribution of par	ticles only						
	(4) mass and distribution of mass about the axis							
Q.17	On account of melting	of ice at the no	rth pole the moment of	of inertia of spinning earth -				
	(1) increases		(2) d	ecreases				
	(3) remains unchange	d	(4) d	(4) depends on the time				
Q.18	Two spheres of same mass and radius are in contact with each other. If the moment of inertia of a sphere							
Q.16 Q.17	about its diameter is I, then the moment of inertia of both the spheres about the tangent at their common point would be -							
	point would be -							
	point would be - (1) 3I	(2) 71	(3) 4I	(4) 5I				
		(2) 7I	(3) 41	(4) 51				
Q.19	(1) 3I			(4) 5I I and length L about its geometrical a	axis would			
Q.19	(1) 3I				axis would			
Q.19	(1) 3I Moment of inertia of a	cylindrical sho	ell of mass M, radius F		axis would			
Q.19	(1) 3I Moment of inertia of a be - (1) MR ²	cylindrical sho	ell of mass M, radius F		axis would			
Q.19	(1) 3I Moment of inertia of a be -		ell of mass M, radius F		axis would			
	(1) 3I Moment of inertia of a be - (1) MR ² (3) $M\left(\frac{R^2}{4} + \frac{L^2}{12}\right)$	(2) $\frac{1}{2}$	ell of mass M, radius F MR^2					
	(1) 3I Moment of inertia of a be - (1) MR ² (3) $M\left(\frac{R^2}{4} + \frac{L^2}{12}\right)$	(2) $\frac{1}{2}$	ell of mass M, radius F MR^2	and length L about its geometrical a				

Q.21	The moment of inerti	a of a body does no	t depend on -					
	(1) its mass		(2) ang	(2) angular velocity				
	(3) distribution of its	particles	(4) its a	ixis of rotation				
Q.22	The moment of inerting passing through the control of the control		with bond length r	about an axis perpendicular to the	bond and			
	(1) $(m_{Na} + m_{Cl})r^2$	$(2) \frac{M_{Na}}{M_{Na}}$	$+\frac{M_{Cl}}{\langle M_{Cl}}r^2$					
	$(3) \frac{M_{Na} \times M_{Cl}}{M_{Na} + M_{Cl}} r^2$	$(4) \frac{M_{\scriptscriptstyle Na}}{M_{\scriptscriptstyle Na}} -$	$\frac{M_{Cl}}{M_{Cl}} r^2$					
Q.23	A disc of metal is mel	ted to recast in the f	form of a solid spher	e. The moment of inertia about a ver	rtical axis			
	passing through the c	entre would -						
	(1) decrease							
	(2) increase							
	(3) remains same							
	(4) nothing can be sai	id						
Q.24	Which of the followin	g quantity is directi	on less-					
Q.24	(1) moment of momentum							
	(2) Moment of force							
	(3) Moment of charge	2	(4) Moment of	inertia				
Q.25	The M.I. of a disc about its diameter is 2 units. Its M.I. about axis through a point on its rim and in the plane							
	of the disc is -							
	(1) 4 units.	(2) 6 units	(3) 8 units	(4) 10 units				
Q.26	A solid sphere and a hollow sphere of the same mass have the same moments of inertia about their respective diameters, the ratio of their radii is -							
	$(1)(5)^{1/2}:(3)^{1/2}$	$(2)(3)^{1/2}$						
	(3) 3 : 2	(4) 2 : 3	. (3)					

- **Q.27** The physical significance of mass in translational motion is same as that of the following in rotational motion -
 - (1) moment of inertia

(2) angular momentum

(3) torque

(4) angular acceleration

Q.28 A stone of mass 4kg is whirled in a horizontal circle of radius 1m and makes 2 rev/sec. The moment of inertia of the stone about the axis of rotation is -

(1) $64 \text{ kg} \times \text{m}^2$

(2) $4 \text{ kg} \times \text{m}^2$

(3) $16 \text{ kg} \times \text{m}^2$

- (4) $1 \text{ kg} \times \text{m}^2$
- **Q.29** In an arrangement four particles, each of mass 2 gram are situated at the coordinate points (3, 2, 0), (1, -1, 0), (0, 0, 0) and (-1, 1, 0). The moment of inertia of this arrangement about the Z-axis will be -

(1) 8 units

(2) 16 units

(3) 43 units

- (4) 34 units
- Q.30 Two discs have same mass and thickness. Their materials are of densities r_1 and r_2 . The ratio of their moment of inertia about central axis will be-

(1) $\rho_1 : \rho_2$

(2) $\rho_1 \rho_2 : 1$

(3) 1: $\rho_1 \rho_2$

(4) $\rho_2 : \rho_1$

ANSWER KEY

	1919									
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	4	1	1	1	3	1	2	3	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	4	4	3	3	4	1	2	1	4
Que.	21	22	23	24	25	26	27	28	29	30
			_			_		_		
Ans.	2	3	1	4	4	1	1	2	4	4