Daily Practice Problems

JEE PHYSICS

Topic: Kinematics

Q. 1 A particle is moving towards East with a velocity $10 \mathrm{~m} / \mathrm{sec}$. In 10 seconds the velocity changes to $10 \mathrm{~m} / \mathrm{sec}$ Northwards. The average acceleration during the period is -
(A) $\sqrt{2} \mathbf{m} / \mathbf{s e c}^{2}$ along North -East direction
(B) $\sqrt{2} \mathbf{m} / \mathrm{sec}^{2}$ along North -West direction
(C) $1 / \sqrt{2} \mathrm{~m} / \mathrm{sec}^{2}$ along North-East direction
(D) $1 / \sqrt{2} \mathrm{~m} / \mathrm{sec}^{2}$ along North-West direction
Q. 2 A train travels from one station to another at a speed of $40 \mathrm{~km} / \mathrm{hour}$ and returns to the first station at the speed of $60 \mathrm{~km} / \mathrm{hour}$. Calculate the average speed and average velocity of the train
(A) 48 km/hr, zero
(B) 84 km/hr, 10 km/hr
(C) $84 \mathrm{~km} / \mathrm{hr}$, zero
(D) 48 km/hr, 10 km/hr
Q. 3 The initial velocity of a particle (at $t=0$) is u and the acceleration of particle at time t is given by $f=$ at, where a is a constant. Which of the following relation for velocity v of particle after time t is true?
(A) $v=u+a t^{2}$
(B) $v=u+a t^{2} / 2$
(C) $v=u+a t$
(D) None of these
Q. 4 The adjoining curve represents the velocity-time graph of a particle, its acceleration values along $O A, A B$ and $B C$ in metre/sec ${ }^{2}$ are respectively-

(A) 1, $0,-0.5$
(B) 1, $0,0.5$
(C) 1, 1, 0.5
(D) 1, 0.5, 0
Q. 5 A body starts from rest, the ratio of distances travelled by the body during $3^{\text {rd }}$ and $4^{\text {th }}$ seconds is :
(A) $7 / 5$
(B) $5 / 7$
(C) $7 / 3$
(D) $3 / 7$
Q. 6 An object is released from some height. Exactly after one second, another object is released from the same height. The distance between the two objects exactly after $\mathbf{2}$ seconds of the release of second object will be:
(A) 4.9 m
(B) 9.8 m
(C) 19.6 m
(D) 24.5 m
Q. 7 A space ship going away from the earth at half the speed of light fires from its nose a rocket which travels with a speed of 0.4 c with reference to the ship. The speed of the rocket with reference to earth is -
(A) zero
(B) 0.1 c
(C) 0.9 c
(D) c
Q. 8 A body is dropped from a height h from the state of rest. It covers a distance of $\mathbf{9 h} / \mathbf{2 5}$ in the last second. What is the height from which the body falls? (in meter)
(A) 12.5
(B) 1.25
(C) 125
(D) Zero
Q. 9 The velocity of a particle moving in the positive direction of x-axis varies as $v=\alpha \sqrt{x}$, where α is positive constant. Assuming that at the moment $t=0$, the particle was located at $x=0$ the value of time dependence of the velocity and the acceleration of the particle -
(A) $\frac{\mathrm{t}}{2 \alpha^{2}}, \frac{1}{2 \alpha^{2}}$
(B) $\frac{\alpha^{2} \mathrm{t}}{2}, \frac{\alpha^{2}}{2}$
(C) $\frac{2 \mathrm{t}}{\alpha^{2}}, \frac{2}{\alpha^{2}}$
(D) None of these
Q. 10 The velocity of a body depends on time according to the equation $\mathbf{v = 2 0 + 0 . 1 t ^ { 2 }}$. The body is undergoing -
(A) uniform acceleration
(B) uniform retardation
(C) non-uniform acceleration
(D) zero acceleration
Q. 11 The distance covered by the body in time t is proportional to the square of the time ' t '. The acceleration of the body is -
(A) increasing
(B) decreasing
(C) zero
(D) constant
Q. 12 A rocket is fired vertically upwards such that its engine takes 10 seconds in exploding fully. Its velocity-time curve is shown in the figure. The height reached by the rocket is -

(A) 20 km
(B) 40 km
(C) 400 km
(D) 1000 km
Q. 13 A rocket is fired vertically from the ground. It moves upwards with a constant acceleration $10 \mathrm{~m} / \mathrm{s}^{2}$ for 30 seconds after which the fuel is consumed. After what time from the instant of firing the rocket will attain the maximum height? Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
(A) $\mathbf{3 0 ~ s e c}$
(B) 45 sec
(C) 60 sec
(D) 75 sec
Q. 14 A boat man could row his boat with a speed $10 \mathrm{~m} / \mathrm{sec}$. He wants to take his boat from P to a point Q just opposite on the other bank of the river flowing at a speed $4 \mathrm{~m} / \mathrm{sec}$. He should row his boat -

(A) at right angle to the stream
(B) at an angle of $\sin ^{-1}(2 / 5)$ with $P Q$ up the stream
(C) at an angle of $\sin ^{-1}(2 / 5)$ with $P Q$ down the stream
(D) at an angle $\cos ^{-1}(2 / 5)$ with PQ down the stream
Q. 15 A train is approaching a platform with a speed of $20 \mathrm{~km} / \mathrm{hr}$. A bird is sitting on a pole at the platform. When train is $\mathbf{2 k m}$ away from the pole brakes are applied so that the train decelerates uniformly, simultaneously the bird also flies towards the train with a velocity $60 \mathrm{~km} / \mathrm{hr}$. It touches the nearest point on the train and flies back and back again and so on. The total distance travelled by the bird before train stop is -
(A) 30 km
(B) 15 km
(C) 12 km
(D) 10 km
Q. 16 A cyclist is moving with a constant acceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$ on a straight track. A racer is moving on a circular path of radius 150 m at constant speed of $15 \mathrm{~m} / \mathrm{s}$. Find the magnitude of velocity of racer which is measured by the cyclist has reached a speed of $\mathbf{2 0 ~ m} / \mathrm{s}$ for the position represented in the figure -

(A) $18.03 \mathrm{~m} / \mathrm{s}$
(B) $25 \mathrm{~m} / \mathrm{s}$
(C) $20 \mathrm{~m} / \mathrm{s}$
(D) $15 \mathrm{~m} / \mathrm{s}$
Q. 17 v-t graph of an object of mass 1 kg is shown. Select the wrong statement -

Q. 18 A body moves from rest with constant acceleration which one of the following represents the variation of its K.E. with the distance (S) travelled -
(A)

(B)

(C)

(D)

Q. 19 At the top of the trajectory of a projectile the direction of its velocity and acceleration are-
(A) Parallel to each other
(B) inclined at an angle of 45° to the horizontal
(C) Perpendicular to each other
(D) None of the above statement is correct
Q. 720 The maximum vertical height attained by a projectile is
(A) $\frac{U^{2} \sin \theta}{g}$
(B) $\frac{\mathrm{U}^{2} \sin 2 \theta}{\mathrm{~g}}$
(C) $\frac{\mathrm{U}^{2} \sin 2 \theta}{2 \mathrm{~g}}$
(D) $\frac{\mathrm{U}^{2} \sin ^{2} \theta}{2 g}$
Q. 21 Equation of motion of a projectile is
(A) $y=x \tan \theta-\frac{g x^{2}}{2 u^{2} \cos ^{2} \theta}$
(B) $y=x \tan \theta+\frac{g x^{2}}{2 u^{2} \cos ^{2} \theta}$
(C) $y=x \sin \theta-\frac{g x^{2}}{2 u \cos ^{2} \theta}$
(D) $y=x \sin \theta+\frac{g x^{2}}{2 u^{2} \cos ^{2} \theta}$
Q. 22 A projectile of mass m is fired with velocity v from the point P at an angle 450 with the horizon. The magnitude of change in momentum when it passes through the point Q on the same horizontal line on which P lies is-

(A) $m v \sqrt{2}$
(B) $\frac{1}{2} \mathrm{mv}$
(C) Zero
(D) 2 mv
Q. 23 An aeroplane is moving with a horizontal velocity u at a height h above the ground. If a packet is dropped from it, the speed of the packet when it reaches the ground will be-
(A) $\sqrt{u^{2}+2 g h}$
(B) $\sqrt{2 g h}$
(C) $\sqrt{u^{2}-2 g h}$
(D) 2 gh
Q. 24 A marble moving with a speed $0.2 \mathrm{~m} / \mathrm{s}$ rolls off the edge of a table 0.8 m high. It will strike the floor at a distance from the table
(A) 0.04 m
(B) 0.24 m
(C) 0.16 m
(D) 0.08 m
Q. 25 A ball rolls off the top of a stairway with a horizontal velocity $u \mathrm{~m} / \mathrm{s}$. If the steps are h metres high and w metres wide, then the ball will just hit the edge of the $n^{\text {th }}$ step if-
(A) $\mathrm{n}=\frac{2 \mathrm{hu}^{2}}{\mathrm{gw}^{2}}$
(B) $\mathrm{n}=\frac{2 \mathrm{hu}}{\mathrm{gw}}$
(C) $\mathrm{n}=\frac{2 \mathrm{~h}^{2} \mathrm{u}^{2}}{\mathrm{~g}^{2} \mathrm{w}^{2}}$
(D) $\mathrm{n}=\mathbf{2} \mathrm{h}^{2} / \mathrm{gu}$
Q. 26 An aeroplane is flying at a speed of $144 \mathrm{~km} / \mathrm{hr}$ at an altitude of 1000 m . How far from a given target should a bomb be released from it to hit the target-
(A) 571.43 m
(B) 671.43 m
(C) 471.34 m
(D) 371.34 m
Q. 27 A boy aims a gun at a bird from a point at a horizontal distance of $\mathbf{1 0 0} \mathbf{m}$. If the gun can impart a velocity of $500 \mathrm{~m} / \mathrm{sec}$ to the bullet, at what height above the bird must he aim his gun in order to hit it (g=10 m/sec ${ }^{2}$)
(A) 100 cm
(B) 50 cm
(C) 40 cm
(D) 20 cm
Q. 28 Two seconds after projection a projectile is travelling in a direction inclined at 300 to the horizon; after one more sec, it is travelling horizontally, the magnitude and direction of its velocity are-
(A) $2 \sqrt{20} \mathrm{~m} / \mathrm{sec}, 60^{\circ}$
(B) $20 \sqrt{3} \mathrm{~m} / \mathrm{sec}, \mathbf{6 0}$
(C) $6 \sqrt{40} \mathrm{~m} / \mathrm{sec}, 300$
(D) $40 \sqrt{6} \mathrm{~m} / \mathrm{sec}, 30 \circ$
Q. 29 When a particle is thrown horizontally, the resultant velocity of the projectile at any time t is given by -
(A) gt
(B) $\frac{1}{2} \mathrm{gt}^{2}$
(C) $\sqrt{u^{2}+g^{2} t^{2}}$
(D) $\sqrt{\mathrm{u}^{2}-\mathrm{g}^{2} \mathrm{t}^{2}}$
Q. 30 A particle moves along the positive branch of the curve $y=\frac{x^{2}}{2}$ where $x=\frac{t^{2}}{2}$, where x and y are measured in metre and t in second. At $\mathrm{t}=\mathbf{2} \mathbf{s e c}$, the velocity of the particle is -
(A) $(2 \hat{i}-4 \hat{j}) \mathrm{m} / \mathrm{sec}$
(B) $(2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{sec}$
(C) $(2 \hat{i}+2 \hat{j}) \mathbf{m} / \mathbf{s e c}$
(D) $(4 \hat{i}-2 \hat{j}) \mathrm{m} / \mathrm{sec}$

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	B	A	B	A	B	D	C	C	B	C
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	A	C	B	C	A	C	C	C	D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	A	A	A	D	A	A	D	B	C	B

