

Daily Practice Problems

JEE PHYSICS

Topic: Vector and Calculus

Q.1 A child pulls a box with a force of 200 N at an angle of 60^o above the horizontal. Then the horizontal and vertical components of the force are-

(A) 100 N, 175 N (B) 86.6 N, 100 N

(C) 100 N, 86.6 N (D) 100 N, 0 N

- Q.2 A boy wants to hold a 50 kg box at rest on a snow covered hill. The hill makes an angle of 30° with the horizontal. What force the boy must exert parallel to the slope ?
 - (A) 25 N (B) 245 N
 - (C) 424 N (D) 490 N
- Q.3 The value of a unit vector in the direction of vector A = $5\hat{i} 12\hat{j}$, is -

(A) \hat{i} (B) \hat{j} (C) $(\hat{i} + \hat{j}) / 13$ (D) $(5\hat{i} - 12\hat{j}) / 13$

Q.4 For the figure –

(A) A + B = C (B) B + C = A

(C) C + A = B (D) A + B + C = 0

- Q.5 Two forces of 4 dyne and 3 dyne act upon a body. The resultant force on the body can only be
 - (A) more than 3 dynes
 - (B) more than 4 dynes
 - (C) between 3 and 4 dynes
 - (D) between 1 and 7 dynes

Q.6 A force of 6 kg and another of 8 kg can be applied together to produce the effect of a single force of-

L1kg
l

(C) 15 kg (D) 20 kg

Q.7 Which of the sets given below may represent the magnitudes of three vectors adding to zero ?

(A) 2, 4, 8 (B) 4, 8, 16 (C) 1, 2, 1 (D) 0.5, 1, 2

Q.8 Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is -

(i) 1 unit	(ii) 5 unit			
(iii) 7 unit				
(A) 180º, 90º, 0º	(B) 80º, 70º, 0º			
(C) 90º, 170º, 50º	(D) None of these			

Q.9 In a two dimensional motion of a particle, the particle moves from point A, position vector r_1 to point B position vector r_2 . If the magnitude of these vector are respectively $r_1 = 3$ and $r_2 = 4$ and the angle they make with the x-axis are $\theta_1 = 75^\circ$, $\theta_2 = 15^\circ$ respectively, then magnitude of the displacement vector is-

(A) $\sqrt{3}$ (B) $\sqrt{13}$ (C) $\sqrt{5}$ (D) $\sqrt{1}$

Q.10 A blind person after walking each 10 steps in one direction, each of length 80 cm, turns randomly to the left or to the right by 90°. After walking a total of 40 steps the maximum possible displacement of the person from his starting position could be -

(A) 320 m (B) 32 m

(C) 16/ $\sqrt{2}$ m (D) 16 $\sqrt{2}$ m

Q.11 The resultant of two vectors A and B is perpendicular to the vector A and its magnitude is equal to half the magnitude of vector B. The angle between A and B is -

(A) 120º (B) 150º

- (C) 135^o (D) None of these
- Q.12 If the angle between vector a and b is an acute angle, then the difference a b is -
 - (A) the main diagonal of the parallelogram
 - (B) the minor diagonal of the parallelogram
 - (C) any of the above (D) none of the above
- Q.13 What is the resultant of three coplanar forces: 300 N at 0°, 400 N at 30° and 400 N at 150° ?

(A) 500 N	(B) 700 N
(C) 1100N	(D) 300 N

- Q.14 Two forces, F₁ and F₂ are acting on a body. One force is double that of the other force and the resultant is equal to the greater force. Then the angle between the two forces is -
 - (A) $\cos^{-1}(1/2)$ (B) $\cos^{-1}(-1/2)$
 - (C) $\cos^{-1}(-1/4)$ (D) $\cos^{-1}(1/4)$
- Q.15 If the magnitudes of the vectors A, B and C are 6, 8, 10 units respectively and if A + B = C, then the angle between A and C is -
 - (A) $\pi/2$ (B) $\cos^{-1}(0.6)$
 - (C) $\tan^{-1}(0.75)$ (D) $\pi/4$

- Q.16 Angle between (P + Q) and (P Q) will be-
 - (A) 0º only
 - (B) 90º only
 - (C) 180º only
 - (D) between 0° and 180° (both the values inclusive)

Q.17 If A = B + C and magnitudes of A, B and C are 5, 4, and 3 units respectively, the angle between A and C is -

(A) $\sin^{-1}(3/4)$ (B) $\cos^{-1}(4/5)$ (C) $\cos^{-1}(3/5)$ (D) $\pi/2$

- Q.18 A particle is moving in a circle of radius r centre at O with constant speed v the change in velocity moving from A to B (∠AOB = 40^o) is -
 - (A) 2v cos 40^o (B) 2v sin 40^o
 - (C) 2v cos 20^o (D) 2v sin 20^o
- Q.19 A truck travelling due north with 20 m/s turns towards west and travels at the same speed. Then the change in velocity is -
 - (A) 40 m/s north-west
 - (B) 20 $\sqrt{2}$ m/s north-west
 - (C) 40 m/s south-west
 - (D) 20 $\sqrt{2}$ m/s south-west
- Q.20 The three vectors OA, OB and OC have the same magnitude R. Then the sum of these vectors have magnitude

(A) R (B) $\sqrt{2}$ R

(C) 3R (D) $(1+\sqrt{2})$ R

Q.21 What displacement must be added to the displacement 25 \hat{i} – 6 \hat{j} m to give a displacement of 7.0 m pointing in the x-direction ?

(A) $\mathbf{18}\hat{i} - \mathbf{6}\hat{j}$ (B) $\mathbf{32}\hat{i} - \mathbf{13}\hat{j}$ (C) $-\mathbf{18}\hat{i} + \mathbf{6}\hat{j}$ (D) $-\mathbf{25}\hat{i} + \mathbf{13}\hat{j}$

- Q.22 Two constant forces $F_1 = 2\hat{i} 3\hat{j} + 3\hat{k}$ (N) and $F_2 = \hat{i} + \hat{j} 2\hat{k}$ (N) act on a body and displace it from the position $r_1 = \hat{i} + 2\hat{j} 2\hat{k}$ (m) to the position $r_2 = 7\hat{i} + 10\hat{j} + 5\hat{k}$ (m). What is the work done ?
 - (A) 9 Joule (B) 41 Joule (C) –3 Joule (D) None of these
- Q.23 Two vectors A and B lie in X-Y plane. The vector B is perpendicular to vector A. If $A = \hat{i} + \hat{j}$, then B may be -
 - (A) $\hat{i} \hat{j}$ (B) $-\hat{i} + \hat{j}$
 - (C) $-2\hat{i} + 2\hat{j}$ (D) Any of the above
- **Q.24** The two vectors $\mathbf{A} = 2\hat{i} + \hat{j} + 3\hat{k}$ and

B = $7\hat{i} - 5\hat{j} - 3\hat{k}$ are -

- (A) parallel (B) perpendicular
- (C) anti-parallel (D) none of these
- **Q.25** Two vectors $\mathbf{P} = 2\hat{i} + b\hat{j} + 2\hat{k}$ and $Q = \hat{i} + \hat{j} + \hat{k}$ will be perpendicular if -
 - (A) b = 0 (B) b = 1
 - (C) b = 2 (D) b = -4
- **Q.26** A vector perpendicular to $(4\hat{i}-3\hat{j})$ is
 - **(A)** $4\hat{i} + 3\hat{j}$ **(B)** $7\hat{k}$
 - (C) $6\hat{i}$ (D) $3\hat{i} 4\hat{j}$
- Q.27 Angle that the vector A = 2 \hat{i} + 3 \hat{j} makes with y-axis is
 - (A) $\tan^{-1} 3/2$ (B) $\tan^{-1} 2/3$
 - (C) $\sin^{-1} 2/3$ (D) $\cos^{-1} 3/2$

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

- Q.28 A vector A points. vertically upward and, B points towards north. The vector product A × B is-
 - (A) along west
 - (B) along east
 - (C) zero
 - (D) vertically downward
- Q.29 The linear velocity of a rotating body is given by $\mathbf{v} = \mathbf{\omega} \times \mathbf{r}$, where $\mathbf{\omega}$ is the angular velocity and \mathbf{r} is the radius vector. The angular velocity of a body $\mathbf{\omega} = \hat{i} 2\hat{j} + 2\hat{k}$ and their radius vector $\mathbf{r} = \mathbf{4}\hat{j} \mathbf{3}\hat{k}$, $|\mathbf{v}|$ is -
 - (A) $\sqrt{29}$ units (B) 31 units
 - (C) $\sqrt{37}$ (D) $\sqrt{41}$ units
- Q.30 0.4 \hat{i} + 0.8 \hat{j} + c \hat{k} represents a unit vector, when c is -
 - (A) 0.2 (B) $\sqrt{0.2}$
 - (C) $\sqrt{0.8}$ (D) 0

ANSWER KEY

			· · · · · · · · · · · · · · · · · · ·							
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	А	В	D	с	D	В	с	А	В	D
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	В	А	с	В	D	с	D	D	D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	с	A	D	В	D	В	В	А	А	В

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.