Part A - PHYSICS

Q. 1 "rad" is the correct unit used to report the measurement of
(a) Biological effect of radiation
(b) Rate of decay of a radioactive source
(c) Ability of a beam of gamma ray photons to produce ions in a target
(d) Energy delivered by radiation to a target.
Q. 2 A projectile is thrown into space so as to have maximum horizontal range R. Taking the point of projection as origin, the co-ordinates of the point where the speed of the particle is minimum are
(a) (R, R)
(b) $\left(\mathrm{R}, \frac{\mathrm{R}}{2}\right)$
(c) $\left(\frac{\mathrm{R}}{2}, \frac{\mathrm{R}}{4}\right)$
(d) $\left(\mathrm{R}, \frac{\mathrm{R}}{4}\right)$
Q. 3 A car is moving along a road with a speed of $45 \mathrm{~km} / \mathrm{h}$. In what direction must body be projected from it with a velocity of $25 \mathrm{~m} / \mathrm{s}$, so that its resultant motion is at right angles to the direction of car?
(a) At an angle of 120° with the direction of motion of car
(b) At an angle of 60° with the direction of motion of car
(c) At an angle of 90° with direction of motion of car
(d) At an angle of 135° with the direction of motion of car.
Q. 4 The ratio of the weight of a man in a stationary lift and when it is moving downward with uniform acceleration a is $3: 2$. The value of a is ($\mathrm{g}:$ acceleration due to gravity on the earth)
(a) $\frac{3}{2} \mathrm{~g}$
(b) $\frac{\mathrm{g}}{3}$
(c) $\frac{2}{3} \mathrm{~g}$
(d) g
Q. 5 The fraction of the floating object of volume V_{0} and density d_{0} above the surface of a liquid of density d will be
(a) $\frac{d_{0}}{d}$
(b) $\frac{\mathrm{dd}_{0}}{\mathrm{~d}+\mathrm{d}_{0}}$
(c) $\frac{d-d_{0}}{d}$
(d) $\frac{\mathrm{dd}_{0}}{\mathrm{~d}-\mathrm{d}_{0}}$
Q. 6 A monoatomic ideal gas, initially at temperature T_{1} is enclosed in a cylinder fitted with a frictionless piston. The gas a allowed to expand adiabatically to temperature T_{2} by relasing the piston suddenly. If L_{1} and L_{2} are the lengths of the gas column before and after expansion, respectively. Then $\mathrm{T}_{1} / \mathrm{T}_{2}$ is given by
(a) $\left(\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}\right)^{2 / 3}$
(b) $\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}$
(c) $\frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}}$
(d) $\left(\frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}}\right)^{2 / 3}$
Q. 7 Two thermally insulated vessels 1 and 2 are filled with air at temperature $T_{1}, T_{2} ;$ volumes V_{1}, V_{2} and pressure $\mathrm{P}_{1}, \mathrm{P}_{2}$, respectively. If the value joining the two vessels is opened, the temperature inside the vessel at equilibrium will be
(a) $\mathrm{T}_{1}=\mathrm{T}_{2}$
(b) $\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) / 2$
(c) $\frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}$
(d) $\frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}}$
Q. 8 A transverse sinusoidal wave moves along a string in the position x-direction at a speed of $10 \mathrm{~cm} /$ s . The wavelength of the wave is 0.5 m and its amplitude is 10 cm . At a particular amplitude is snap-shot of the wave is shown in the figure. The velocity of point p when its displacement is 5 cm , is

(a) $\frac{\sqrt{3 \pi}}{50} \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}$
(b) $-\frac{\sqrt{3 \pi}}{50} \hat{j} \mathrm{~m} / \mathrm{s}$
(c) $\frac{\sqrt{3} \pi}{50} \hat{\mathrm{I}} \mathrm{m} / \mathrm{s}$
(d) $-\frac{\sqrt{3} \pi}{50} \hat{I} \mathrm{~m} / \mathrm{s}$
Q. 9 Two charges $9 e$ and $3 e$ are placed at a distance r. The distance of the point where the electric fields intensity will be zero is
(a) $\frac{\mathrm{r}}{(\sqrt{3}+1)}$ from $9 e$ charge
(b) $\frac{\mathrm{r}}{1+\sqrt{1} / 3)}$ from $9 e$ charge
(c) $\frac{\mathrm{r}}{(1-\sqrt{3})}$ from $3 e$ charge
(d) $\frac{\mathrm{r}}{1+\sqrt{1 / 3}}$ from $3 e$ charge
Q. 10 This question Statement-1 and Statement -2. Of the four choices given after the statement, choose the one that best describes the two statements.
Statement-1: For a charged particle moving from point P to point Q , the net work done by an electrostatic field on the particle is independent of the path connecting point P to point Q .
Statement -2 : The net work done by a conservative force on an object moving along a closed loop is zero.
(a) Statement-1 is true, Statement-2 is false.
(b) Statement-1 is true, Statement-2 is true; Statement-2 is correct explanation of Statement-1.
(c) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1
(d) Statement-1 is false, Statement-2 is true.
Q. 11 An air capacitor of capacity $\mathrm{C}=10 \mu \mathrm{~F}$ is connected to a constant voltage bettery of 12 V . Now the space between the plates is filled with a liquid of dielectric constant 5 . The charge that flows now from battery to the capacitor is
(a) $120 \mu \mathrm{~F}$
(b) $600 \mu \mathrm{~F}$
(c) $480 \mu \mathrm{~F}$
(d) $24 \mu \mathrm{~F}$
Q. 12 A wire of resistance $0.5 \Omega / \mathrm{m}$ is bent into a circle of radius 1 m . The same wire is connected across a diameter AB as shown in figure. The equivalent resistance is

(a) $\pi \mathrm{ohm}$
(b) $\pi(\pi+2) \mathrm{ohm}$
(c) $\pi(\pi+4) \mathrm{ohm}$
(d) $(\pi+1)$ ohm
Q. 13 If an electron and a proton having a same moment enter perpendicular to a magnetic field, then
(a) The curved path of the electron and proton will be same (ignoring the sense of revolution)
(b) They will more undeflected
(c) The curved path of electron will be more curved than that of proton.
(d) The path of proton will be more curved.
Q. 14 A direct current flows in a long straight conductor whose cross-section has form of a thin half ring of radius R. The same current flows in opposite direction along a thin conductor placed on the axis on first conductor, then the magnetic interaction force between the conductors to a unit of their length is
(a) $\frac{\mu_{0} I^{2}}{\pi^{2} R}$
(b) $\frac{\mu_{0} I}{2 \pi R}$
(c) $\frac{\mu_{0} I}{\pi^{2} R}$
(d) $\frac{2 \mu_{0} \mathrm{I}}{\pi \mathrm{R}}$
Q. 15 As shown figure, a metal rod makes contact and complete the circuit. The circuit is perpendicular to the magnetic field with $\mathrm{B}=0.15$ Tesla. If the resistance is 3Ω, force needed to move the rod as indicated with a constant spedd of $2 \mathrm{~m} / \mathrm{s}$ is

(a) $3.75 \times 10^{-3} \mathrm{~N}$
(b) $3.75 \times 10^{-2} \mathrm{~N}$
(c) $3.75 \times 10^{2} \mathrm{~N}$
(d) $3.75 \times 10^{-4} \mathrm{~N}$
Q. 16 The magnetic field in the plane electromagnetic wave is given by $B_{z}=2 \times 10^{-7} \sin \left(0.5 \times 10^{9} x+1.5 \times 10^{11} \mathrm{t}\right)$. The expression for electric field will be
(a) $\mathrm{E}_{z}=30 \sqrt{2} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$
(b) $\mathrm{E}_{\mathrm{z}}=60 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$
(c) $\mathrm{E}_{\mathrm{y}}=30 \sqrt{2} \sin \left(0.5 \times 10^{11} x+0.5 \times 10^{3} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$
(d) $\mathrm{E}_{\mathrm{y}}=60 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$
Q. 17 The diameter of the eye-ball of a normal eye is about 2.5 cm . The power of the eye lens varies from
(a) 2D to 10D
(b) 40 D to 32 D
(c) 9 D to 8 D
(d) 44 D to 40 D
Q. 18 The eye can detect 5×10^{4} photons / m^{2} s of green light $\left(\lambda=5000 \AA\right.$), while car can detect 10^{-13} $\mathrm{W} / \mathrm{m}^{2}$. As a power detector, which is more sensitive and by what factor?
(a) Eye is more sensitive and by a factor of 5.00
(b) Ear is more sensitive by a factor of 5.00
(c) Both are equally sensitive.
(d) Eye is more sensitive by a factor of 10 .
Q. 19 An electron revolving in an orbit of radius $0.5 \AA$ in a hydrogen atom executes 10 revolution per second. The magnetic moment of electron due to its orbit motion will be
(a) $1.256 \times 10^{-32} \mathrm{Am}^{2}$
(b) $653 \times 10^{-26} \mathrm{Am}^{2}$
(c) $10^{-3} \mathrm{Am}^{2}$
(d) $256 \times 10^{-26} \mathrm{Am}^{2}$
Q. 20 The percentage of quantity of a radioactive material that remain after five half lives will be
(a) 31%
(b) 3.125%
(c) 0.3%
(d) 1%
Q. 21 A body sliding on a smooth inclined plane requires 4 s to reach the bottom starting from rest at the top. How much time does it take to cover one-fourth distance starting from rest at the top.
Q. 22 A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and the wall is 0.2 . The weight of the block is \qquad $?$

Q. 23 A heating coil is labelled $100 \mathrm{~W}, 220 \mathrm{~V}$. The coil is cut in half and the two pieces are joined in parallel to the same source. The energy now liberated per second is \qquad ?
Q. 24 In a series LCR circuit $R=200 \Omega$ and the voltage and the frequency of the main supply is 220 V and 50 Hz respectively. On taking out the capacitance from the circuit the current lags behind the voltage by 30°. On taking out the inductor from the circuit the current leads the voltage by 30°. The power dissipated in the LCR circuit is_ \qquad ?
Q. 25 If the potential function is given by $V=4 x+3 y$, then the magnitude of electric field intensity at the point $(2,1)$ will be?

Part - B - CHEMISTRY

Q. 26 The wave number of the first line in the Balmer series of hydrogen is $15200 \mathrm{~cm}^{-1}$, What would be the wave number of the first line in the Lyman series of the Be^{3+} ion?
(a) $2.4 \times 10^{5} \mathrm{~cm}^{-1}$
(b) $24.3 \times 10^{5} \mathrm{~cm}^{-1}$
(c) $6.08 \times 10^{5} \mathrm{~cm}^{-1}$
(d) $1.313 \times 10^{6} \mathrm{~cm}^{-1}$
Q. 27 A quantity of heat is confined in a chamber of constant volume. When the chamber is immersed in a bath of melting ice, the pressure of the gas is 1000 torr. Find the temperature when the pressure manometer indicates in absolute pressure of 400 torr.
(a) 109 K
(b) 273 K
(c) 373 K
(d) 0 K
Q. 28 Anhydrous AlCl_{3} is a covalent compound from the data given. Predict whether it will remain covalent or become ionic in an aqueous solution. (Lattice energy of $\mathrm{AlCl}_{3}=5137 \mathrm{~kJ} / \mathrm{mol}$), $\Delta \mathrm{H}$ hydration for $\mathrm{Al}^{3+}=-4665 \mathrm{~kJ} / \mathrm{mol}$, and $\Delta \mathrm{H}$ hydration for $\mathrm{Cl}^{-}=-381 \mathrm{kj} / \mathrm{mol}$.
(a) Ionic
(b) Covalent
(c) Partially ionic
(d) Partially covalent
Q. 29 For $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \rightleftarrows \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$: observed pressure for reaction mixture at equilibrium is 1.12 atm at $106^{\circ} \mathrm{C}$. The value of K_{p} for the reaction is :
(a) $3.316 \mathrm{~atm}^{2}$
(b) $0.316 \mathrm{~atm}^{2}$
(c) $31.36 \mathrm{~atm}^{2}$
(d) $6.98 \mathrm{~atm}^{2}$
Q. 30 The degree of hydrolysis in hydrolytic equilibrium $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-}$at salt concentration of 0.001 M is $\left(\mathrm{K}_{a}=1 \times 10^{-5}\right)$:
(a) 1×10^{-3}
(b) 1×10^{-4}
(c) 5×10^{-4}
(d) 1×10^{-4}
Q. 31 A solution is obtained by dissolving 12 g of urea (molecular weight 60) in a litre of water.

Another solution in obtained by dissolving 68.4 g of cane sugar (molecular weight 342) in a litre of water at the same temperature. The lowering of vapour pressure in the first solution is :
(a) same as that of the second solution
(b) nearly one-fifth of the second solution
(c) double that of the second solution
(d) nearly five times that of the second solution
Q. 32 We have taken a saturated solution of AgBr . K_{sp} of AgBr is 12×10^{-14}. If $10^{-7} \mathrm{~mol}$ of AgNO_{3} is added to 1 L of this solution, then the conductivity of this solution in terms of $10^{-7} \mathrm{~S} /$ m units will be :
[Given $\lambda_{\left(\mathrm{Ag}^{+}\right)}^{0}=4 \times 10^{-3} \mathrm{Sm}^{2} / \mathrm{mol} ; \lambda_{(\mathrm{Br})}^{0}=6 \times 10^{-3} \mathrm{Sm}^{2} / \mathrm{mol} ; \lambda_{\left(\mathrm{NO}_{\overline{\mathrm{a}}}\right)}^{0}=5 \times 10^{-3} \mathrm{Sm}^{2} / \mathrm{mol}$]
(a) 39
(b) 55
(c) 15
(d) 41
Q. $33 \quad \mathrm{~A}_{\text {(aq) }} \rightarrow \mathrm{B}_{\text {(aq) }}+\mathrm{C}_{\text {(aq) }}$ is a first-order reaction,

Time t
Moles of reagent $\quad n_{1}$ ${ }_{n}^{\infty}$
Reaction progress is measured with the help of titration with reagent R. If all A, B and C reacted with the reagent and have n factors [n factor; eq. $\mathrm{wt} .=(\mathrm{mol} . \mathrm{wt} . / n)$] in the ratio of $1: 2: 3$ with the reagent, the k in terms of t, n_{1}, and n_{2} is :
(a) $\mathrm{k}=\frac{1}{\mathrm{t}} \operatorname{In}\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{2}-\mathrm{n}_{1}}\right)$
(b) $\mathrm{k}=\frac{1}{\mathrm{t}} \operatorname{In}\left(\frac{2 \mathrm{n}_{2}}{\mathrm{n}_{2}-\mathrm{n}_{1}}\right)$
(c) $\mathrm{k}=\frac{1}{\mathrm{t}} \operatorname{In}\left(\frac{4 \mathrm{n}_{2}}{\mathrm{n}_{2}-\mathrm{n}_{1}}\right)$
(d) $\mathrm{k}=\frac{1}{\mathrm{t}} \operatorname{In}\left(\frac{4 \mathrm{n}_{2}}{5\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}\right)$
Q. 34 Which of the following will be the least reactive towards nucleophilic substitution?
(a)

(b)

(c)

(d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
Q. 35 A molecule can be said to have plane of symmetry if :
(a) It can be divided into two equal halves - one half being the mirror image of the other half
(b) It can be divided into two halves - one half is not the mirror image of the other half
(c) It does not have centre of symmetry
(d) It does not have axis of symmetry
Q. 36 The most unlikely representation of resonance structures of p-nitrophenoxide ion is
(a)

(b)

(c)

(d)

Q. 37 Which of the following is an example of associated colloid?
(a) Protein + water
(b) Soap + water
(c) Rubber + benzene
(d) $\mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{Fe}(\mathrm{OH})_{3}$
Q. 38 Order of the bond strength of $\mathrm{C}-\mathrm{H}$ bonds involvings $s p, s p^{2}$, and $s p^{3}$ hybridized carbon atoms is :
(a) $s p>s p^{2}>s p^{3}$
(b) $s p^{3}>s p^{2}>s p$
(c) $s p^{2}>s p^{3}>s p$
(d) $s p^{2}>s p>s p^{3}$
Q. 39 When
 reacts with $\mathrm{CH}_{3} \mathrm{COO} \mathrm{Na}^{+}$(excess), the product formed is :
(a)

(b)

(c)

(d)

Q. 40 Which of the following will be obtained by keeping ether in contact with air for a long time ?
(a) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-\mathrm{OH}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OCH}_{2}-\mathrm{OH}$
(c) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(d) $\mathrm{CH}_{3}-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-\mathrm{OH}$
Q. 41 Which is not true about acetophenone?
(a) Reacts to form 2, 4-dinitorphenylhydrazine
(b) Reacts with Tollen's reagent to form silver mirror
(c) Reacts with $\mathrm{I}_{2} / \mathrm{NaOH}$ to form iodoform
(d) On oxidation with alkaline KMnO_{4} followed by hydrolysis gives benzoic acid
Q. 42 A primary amine forms an amide by the treatement of bromine and alkali. The primary amine has:
(a) 1 carbon atom less than amide
(b) 1 carbon atom more than amide
(c) 1 hydrogen atom less than amide
(d) 1 hydrogen atom more than amide
Q. 43 Empirical formula of a compound is $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$ and its molecular weight is 90 . Molecular formula of the compound is:
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
(b) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
(c) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
(d) $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{O}$
Q. 44 Rayon is :
(a) natural silk
(b) artificial silk
(c) natural plastic or rubber
(d) synthetic plastic
Q. 45 There is mixture of Cu (II) chloride and Fe (II) sulphate. The best way to separate the metal ions from this mixture in qualitative analysis is :
(a) hydrogen sulphide in acidic medium, where only $\mathrm{Cu}(\mathrm{II})$ sulphide will be precipitated
(b) ammonium hydroxide buffer, where only Fe (II) hyroxide will be precipitated
(c) hydrogen sulphide in acidic medium, where only $\mathrm{Fe}(\mathrm{II})$ sulphide will be precipitated
(d) ammonium hydroxide buffer, where only $\mathrm{Cu}(\mathrm{II})$ hydroxide will be precipiated
Q. 46 The molarity of Cl in an aqueous solution which was $(w / V) 2 \% \mathrm{NaCl}, 4 \% \mathrm{CaCl}_{2}$, and $6 \% \mathrm{NH}_{4} \mathrm{Cl}$ will be :
Q. 47 The number of electrons that are paired in oxygen molecule is :
Q. $48 \quad \mathrm{~A}_{2} \mathrm{~B}$ molecules (molar mass $=259.8 \mathrm{~g} / \mathrm{mol}$) crystallizes in a hyxagonal lattice as shown in the figure. The lattice constant were $a=5 \AA$ and $b=8 \AA$. If the density of crystal is $5 \mathrm{~g} / \mathrm{cm}^{3}$, the how many molecules are contained in the given unit cell?
(Use $\mathrm{N}_{\mathrm{A}}=6 \times 10^{23}$)
Q. 49 Oxidation states of vanadium in
$\mathrm{V} \rightarrow \mathrm{V}^{2+}+2 \mathrm{e}$,
$\mathrm{V}^{2+} \rightarrow \mathrm{V}^{3+}+\mathrm{e}$, are 2 and 3 respectively. The oxidation states of vanadium in this following
reaction: $\mathrm{V}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}^{2+}+2 \mathrm{H}^{+}+\mathrm{e}$?
Q. 50 Antimony reacts with sulphur according to the equation
$2 \mathrm{Sb}(\mathrm{s})+3 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{Sb}_{2} \mathrm{~S}_{3}(\mathrm{~s})$ The molar mass of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ is $340 \mathrm{~g} \mathrm{~mol}^{-1}$
What is the percentage yield for a reaction in which 1.40 g of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ is btained from 1.73 g of antimony and a slight excess of sulphur?

Part - C - MATHEMATICS

Q. 51 If the ratio of the sums to n terms of two AP's is $(5 n+3):(3 n+4)$, then the ratio of their $17^{\text {th }}$ terms is
(a) $172: 99$
(b) $168: 103$
(c) $175: 99$
(d) $171: 103$
Q. 52 If roots of the quadratic equation $a x^{2}+b x+c=0$ with real coefficients are complex, then imaginary part of the roots is
(a) $\frac{ \pm \sqrt{b^{2}+4 a c}}{2 a}$
(b) $\frac{ \pm \sqrt{b^{2}-4 a c}}{a}$
(c) $\frac{ \pm \sqrt{4 a c-b^{2}}}{2 a}$
(d) none of these
Q. 53 If distance of z_{1} from the origin is 4 and distance of $z_{1} z_{2}$ from the origin is 2 then distance of z_{2} from the origion is
(a) 2
(b) 6
(c) 8
(d) none of these
Q. 54 Let A and B be two matrices such that they commute then for any positive integer n.
(i) $\mathrm{AB}^{n}=\mathrm{B}^{n} \mathrm{~A}$
(ii) $(\mathrm{AB})^{n}=\mathrm{A}^{n} \mathrm{~B}^{n}$
(a) Only (a) is correct
(b) both (a) and (b) are correct
(c) only (b) is correct
(d) none of (a) and (b) are correct
Q. 55 Let a, b, and c be the real numbers. Then the following system of equations in $x . y$, and z, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1,-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ has
(a) no solution
(b) unique solution
(c) infinitely many solution
(d) finitely many solutions.
Q. 56 If the pair of lines $a x^{2}+2(a+b) x y+b y^{2}=0$ lies along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sectors, then
(a) $3 a^{2}-2 a b+3 b^{2}=0$
(b) $3 a^{2}-10 a b+3 b^{2}=0$
(c) $3 a^{2}+2 a b+3 b^{2}=0$
(d) $3 a^{2}+10 a b+3 b^{2}=0$
Q. 57 Let L be a normal to the parabola $y^{2}=4 x$. If L passes through the point $(9,6)$, then which of the following is not the equation of L ?
(a) $y-x+3=0$
(b) $y+3 x-33=0$
(c) $y+x-15=0$
(d) $y-2 x+12=0$
Q. 58 Two circles are given such that one is completely lying inside other without touching. Then locus of centre of variable circle which touches smaller circle from outside and bigger circle from inside is
(a) ellipse
(b) hyperbola
(c) parabola
(d) circle
Q. 59 The locus of the foot of the perpendicular from the centre of the hyperbola $x y=1$ on a variable tangent is
(a) $\left(x^{2}-y^{2}\right)^{2}=4 x y$
(b) $\left(x^{2}+y^{2}\right)^{2}=2 x y$
(c) $\left(x^{2}+y^{2}\right)=4 x y$
(d) $\left(x^{2}+y^{2}\right)^{2}=4 x y$
Q. $60 \quad$ If R and R ' are symmetric relations (not disjoint) on a set A , then the relation $R \cap R$ ' is
(a) reflexive
(b) symmetric
(c) transitive
(d) none of these
Q. 61 Which of the following functions is an even functions?
(a) $f(x)=\frac{a^{x}+a^{-x}}{a^{x}-a^{-x}}$
(b) $f(x)=\frac{a^{x}+1}{a^{x}-1}$
(c) $f(x)=x \frac{a^{x}-1}{a^{x}+1}$
(d) $f(x)=\log _{2}\left(x+\sqrt{x^{2}+1}\right)$
Q. 62 If $f(x)=\lim _{n \rightarrow \infty} n\left(x^{1 / n}-1\right)$. The for $x>0, y>0, f(x, y)$ is equal to
(a) $f(x) f(y)$
(b) $f(x)+f(y)$
(c) $f(x)-f(y)$
(d) none of these
Q. 63 If $y=\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a\left(a^{2}-3 x^{2}\right)}\right)$, then $\frac{d y}{d x}=$
(a) $\frac{3 a^{2}}{a^{2}+x^{2}}$
(b) $\frac{3 a}{a^{2}+x^{2}}$
(c) $\frac{a}{a^{2}+x^{2}}$
(d) $\frac{3}{a^{2}+x^{2}}$
Q. 64 Given $f(x)$ is a function such that $f(x)=\left[\begin{array}{ll}x^{a} \sin \frac{1}{x} & \text { if } x>0 \\ 0 & \text { if } x=0\end{array}\right]$ where α is a constant. $f(x)$ is a derivable $\forall x \geq 0$. then the least integral value of α is
(a) 1
(b) 0
(c) 2
(d) none of these
Q. 65 Given $g(x)=\frac{x+2}{x-1}$ and the line $3 x+y-10=0$, then the line is
(a) tangent to $g(x)$
(b) normal to $g(x)$
(c) chord of $g(x)$
(d) none of these
Q. $66 \int \frac{\sin x+\cos x}{\sin (x-\alpha)} d x$ is equal to
(a) $(\cos \alpha-\sin \alpha)(x-\alpha)+(\cos \alpha+\sin \alpha) \log |\sin (x-\alpha)|+c$
(b) $(\cos \alpha+\sin \alpha)(x-\alpha)-(\cos \alpha-\sin \alpha) \log |\sin (x-\alpha)|+c$
(c) $(\cos \alpha+\sin \alpha)(x+\alpha)+(\cos \alpha-\sin \alpha) \log |\sin (x+\alpha)|+c$
(d) none of these
Q. 67 The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4$, $y=4$ and the coordinate axes. If $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ are respectively the then, $\mathrm{S}_{1}: \mathrm{S}_{2}: \mathrm{S}_{2}$ is \qquad ?
(a) $1: 2: 3$
(b) $1: 2: 1$
(c) $1: 1: 1$
(d) $2: 1: 2$
Q. 68 The minimum value of the expression $\sin \alpha+\sin \beta+\sin \gamma \cdot$ where α, β, γ are real number satisfying $\alpha+\beta+\gamma=\pi$ is \qquad ?
(a) positive
(b) zero
(c) negative
(d) -3
Q. 69 The range of values of p for which the equation $\sin \cos ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right)=p$ has a solution is \qquad ?
(a) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(b) $[0,1)$
(c) $\left[\frac{1}{\sqrt{2}}, 1\right)$
(d) $(-1,1)$
Q. 70 For a regular polygon, Let r and R be the radii of the inscribed and the circumscribed circles. A false statements among the following is \qquad ?
(a) There is a regular polygon with $\frac{r}{R}=\frac{\sqrt{3}}{2}$
(b) There is a regular polygon with $\frac{r}{R}=\frac{1}{2}$
(c) There is a regular polygon with $\frac{r}{R}=\frac{1}{\sqrt{2}}$
(d) There is a regular polygon with $\frac{r}{R}=\frac{2}{3}$
Q. 71 Consider the frequency distribution of the given numbers

Value	1	2	3	4
Frequency	5	4	6	f

Q. 72 Number of ordered pair(s), (a, b) for each of which the equality, a $(\cos x-1)+b^{2}=\cos \left(a x+b^{2}\right)-1$ hold true for all $x \in R$ are ?
Q. 73 A closed vessel tapers to a point both at its top E and its bottom F and is fixed with $E F$ vertical when the depth of the liquid in it is $x \mathrm{~cm}$, the volume of the liquid in it $x^{2}(15-x) \mathrm{cu} . \mathrm{cm}$. The length $E F$ is \qquad ?
Q. 74 If the sum of 99 terms of AP is 198 , then the value of the 50 th term is \qquad ?
Q. 75 Five balls of different colours are to be placed in three boxes of different sizes. Each box can hold all five balls. In how may ways can we place the balls so that no box reamins empty?

JEE (MAIN)

TEST PAPER

SUBJECT : PHYSICS,CHEMISTRY, MATHEMATICS
TEST CODE : TSJMT216

QUESTION PAPER

TIME: 3 HRS
MARKS : 300

INSTRUCTIONS

GENERAL INSTRUCTIONS :

1. This test consists of 75 questions.
2. There are three parts in the question paper A, B, C consisting of Physics, Chemistry and Mathematics having 25 questions in each part.
3. 20 questions will be Multiple choice questions \& 5 quetions will have answer to be filled as numerical value.
4. Marking scheme:

Type of Questions	Total Number of Questions	Correct Answer	Incorrect Answer	Unanswered
MCQ's Numerical Values	20	+4	Minus One Mark(-1)	NoMark (0)
NoMark (0)				

5. There is only one correct responce for each question. Filling up more than one responce in each question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 4 above.

OPTICAL MARK RECOGNITION (OMR) :

6. The OMR will be provided to the students.
7. Darken the appropriate bubbles on the OMR sheet by applying sufficient pressure.
8. The OMR sheet will be collected by the invigilator at the end of the examination.
9. Do not tamper with or mutilate the OMR. Do not use the OMR for rough work.
10. Write your name, Batch name, name of the center, Test Code, roll number and signature with pen in the space provided for this purpose on the OMR. Do not write any of these details anywhere else on the OMR.

DARKENING THE BUBBLES ON THE OMR :

11. Use a BLACK BALL POINT PEN to darken the bubbles on the OMR.
12. Darken the bubble COMPLETELY.
13. Darken the bubbles ONLY IF you are sure of the answer. There is NO WAY to erase or "un- darken" a darkened bubble.

Part A - PHYSICS

Q. 1 "rad" is the correct unit used to report the measurement of
(a) Biological effect of radiation
(b) Rate of decay of a radioactive source
(c) Ability of a beam of gamma ray photons to produce ions in a target
(d) Energy delivered by radiation to a target.
Q. 2 A projectile is thrown into space so as to have maximum horizontal range R. Taking the point of projection as origin, the co-ordinates of the point where the speed of the particle is minimum are
(a) (R, R)
(b) $\left(\mathrm{R}, \frac{\mathrm{R}}{2}\right)$
(c) $\left(\frac{\mathrm{R}}{2}, \frac{\mathrm{R}}{4}\right)$
(d) $\left(\mathrm{R}, \frac{\mathrm{R}}{4}\right)$
Q. 3 A car is moving along a road with a speed of $45 \mathrm{~km} / \mathrm{h}$. In what direction must body be projected from it with a velocity of $25 \mathrm{~m} / \mathrm{s}$, so that its resultant motion is at right angles to the direction of car?
(a) At an angle of 120° with the direction of motion of car
(b) At an angle of 60° with the direction of motion of car
(c) At an angle of 90° with direction of motion of car
(d) At an angle of 135° with the direction of motion of car.
Q. 4 The ratio of the weight of a man in a stationary lift and when it is moving downward with uniform acceleration a is $3: 2$. The value of a is ($\mathrm{g}:$ acceleration due to gravity on the earth)
(a) $\frac{3}{2} \mathrm{~g}$
(b) $\frac{\mathrm{g}}{3}$
(c) $\frac{2}{3} \mathrm{~g}$
(d) g
Q. 5 The fraction of the floating object of volume V_{0} and density d_{0} above the surface of a liquid of density d will be
(a) $\frac{d_{0}}{d}$
(b) $\frac{\mathrm{dd}_{0}}{\mathrm{~d}+\mathrm{d}_{0}}$
(c) $\frac{d-d_{0}}{d}$
(d) $\frac{\mathrm{dd}_{0}}{\mathrm{~d}-\mathrm{d}_{0}}$
Q. 6 A monoatomic ideal gas, initially at temperature T_{1} is enclosed in a cylinder fitted with a frictionless piston. The gas a allowed to expand adiabatically to temperature T_{2} by relasing the piston suddenly. If L_{1} and L_{2} are the lengths of the gas column before and after expansion, respectively. Then T_{1} / T_{2} is given by
(a) $\left(\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}\right)^{2 / 3}$
(b) $\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}$
(c) $\frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}}$
(d) $\left(\frac{\mathrm{L}_{2}}{\mathrm{~L}_{1}}\right)^{2 / 3}$
Q. 7 Two thermally insulated vessels 1 and 2 are filled with air at temperature T_{1}, T_{2}; volumes V_{1}, V_{2} and pressure $\mathrm{P}_{1}, \mathrm{P}_{2}$, respectively. If the value joining the two vessels is opened, the temperature inside the vessel at equilibrium will be
(a) $\mathrm{T}_{1}=\mathrm{T}_{2}$
(b) $\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) / 2$
(c) $\frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}$ (d) $\frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}}$
Q. 8 A transverse sinusoidal wave moves along a string in the position x-direction at a speed of $10 \mathrm{~cm} /$ s . The wavelength of the wave is 0.5 m and its amplitude is 10 cm . At a particular amplitude is snap-shot of the wave is shown in the figure. The velocity of point p when its displacement is 5 cm , is

(a) $\frac{\sqrt{3 \pi}}{50} \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}$
(b) $-\frac{\sqrt{3 \pi}}{50} \hat{j} \mathrm{~m} / \mathrm{s}$
(c) $\frac{\sqrt{3} \pi}{50} \hat{\mathrm{I}} \mathrm{m} / \mathrm{s}$
(d) $-\frac{\sqrt{3} \pi}{50} \hat{\mathrm{I}} \mathrm{m} / \mathrm{s}$
Q. 9 Two charges $9 e$ and $3 e$ are placed at a distance r. The distance of the point where the electric fields intensity will be zero is
(a) $\frac{\mathrm{r}}{(\sqrt{3}+1)}$ from $9 e$ charge
(b) $\frac{r}{1+\sqrt{1} / 3)}$ from $9 e$ charge
(c) $\frac{\mathrm{r}}{(1-\sqrt{3})}$ from $3 e$ charge
(d) $\frac{\mathrm{r}}{1+\sqrt{1 / 3}}$ from $3 e$ charge
Q. 10 This question Statement-1 and Statement -2. Of the four choices given after the statement, choose the one that best describes the two statements.
Statement-1: For a charged particle moving from point P to point Q, the net work done by an electrostatic field on the particle is independent of the path connecting point P to point Q .
Statement - 2 : The net work done by a conservative force on an object moving along a closed loop is zero.
(a) Statement-1 is true, Statement-2 is false.
(b) Statement-1 is true, Statement-2 is true; Statement-2 is correct explanation of Statement-1.
(c) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1
(d) Statement-1 is false, Statement-2 is true.
Q. 11 An air capacitor of capacity $\mathrm{C}=10 \mu \mathrm{~F}$ is connected to a constant voltage bettery of 12 V . Now the space between the plates is filled with a liquid of dielectric constant 5 . The charge that flows now from battery to the capacitor is
(a) $120 \mu \mathrm{~F}$
(b) $600 \mu \mathrm{~F}$
(c) $480 \mu \mathrm{~F}$
(d) $24 \mu \mathrm{~F}$
Q. 12 A wire of resistance $0.5 \Omega / \mathrm{m}$ is bent into a circle of radius 1 m . The same wire is connected across a diameter AB as shown in figure. The equivalent resistance is

(a) $\pi \mathrm{ohm}$
(b) $\pi(\pi+2) \mathrm{ohm}$
(c) $\pi(\pi+4) \mathrm{ohm}$
(d) $(\pi+1)$ ohm
Q. 13 If an electron and a proton having a same moment enter perpendicular to a magnetic field, then
(a) The curved path of the electron and proton will be same (ignoring the sense of revolution)
(b) They will more undeflected
(c) The curved path of electron will be more curved than that of proton.
(d) The path of proton will be more curved.
Q. 14 A direct current flows in a long straight conductor whose cross-section has form of a thin half ring of radius R. The same current flows in opposite direction along a thin conductor placed on the axis on first conductor, then the magnetic interaction force between the conductors to a unit of their length is
(a) $\frac{\mu_{0} I^{2}}{\pi^{2} R}$
(b) $\frac{\mu_{0} I}{2 \pi R}$
(c) $\frac{\mu_{0} I}{\pi^{2} R}$
(d) $\frac{2 \mu_{0} \mathrm{I}}{\pi \mathrm{R}}$
Q. 15 As shown figure, a metal rod makes contact and complete the circuit. The circuit is perpendicular to the magnetic field with $\mathrm{B}=0.15$ Tesla. If the resistance is 3Ω, force needed to move the rod as indicated with a constant spedd of $2 \mathrm{~m} / \mathrm{s}$ is

(a) $3.75 \times 10^{-3} \mathrm{~N}$
(b) $3.75 \times 10^{-2} \mathrm{~N}$
(c) $3.75 \times 10^{2} \mathrm{~N}$
(d) $3.75 \times 10^{-4} \mathrm{~N}$
Q. 16 The magnetic field in the plane electromagnetic wave is given by $\mathrm{B}_{\mathrm{z}}=2 \times 10^{-7} \sin \left(0.5 \times 10^{9} x+1.5 \times 10^{11} \mathrm{t}\right)$. The expression for electric field will be
(a) $\mathrm{E}_{z}=30 \sqrt{2} \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$
(b) $\mathrm{E}_{\mathrm{z}}=60 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$
(c) $\mathrm{E}_{\mathrm{y}}=30 \sqrt{2} \sin \left(0.5 \times 10^{11} x+0.5 \times 10^{3} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$
(d) $\mathrm{E}_{\mathrm{y}}=60 \sin \left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$
Q. 17 The diameter of the eye-ball of a normal eye is about 2.5 cm . The power of the eye lens varies from
(a) 2 D to 10 D
(b) 40 D to 32 D
(c) 9 D to 8 D
(d) 44 D to 40 D
Q. 18 The eye can detect 5×10^{4} photons $/ \mathrm{m}^{2}$ s of green light $\left(\lambda=5000 \AA\right.$), while car can detect 10^{-13} $\mathrm{W} / \mathrm{m}^{2}$. As a power detector, which is more sensitive and by what factor?
(a) Eye is more sensitive and by a factor of 5.00
(b) Ear is more sensitive by a factor of 5.00
(c) Both are equally sensitive.
(d) Eye is more sensitive by a factor of 10 .
Q. 19 An electron revolving in an orbit of radius $0.5 \AA$ in a hydrogen atom executes 10 revolution per second. The magnetic moment of electron due to its orbit motion will be
(a) $1.256 \times 10^{-32} \mathrm{Am}^{2}$
(b) $653 \times 10^{-26} \mathrm{Am}^{2}$
(c) $10^{-3} \mathrm{Am}^{2}$
(d) $256 \times 10^{-26} \mathrm{Am}^{2}$
Q. 20 The percentage of quantity of a radioactive material that remain after five half lives will be
(a) 31%
(b) 3.125%
(c) 0.3%
(d) 1%
Q. 21 A body sliding on a smooth inclined plane requires 4 s to reach the bottom starting from rest at the top. How much time does it take to cover one-fourth distance starting from rest at the top.
Q. 22 A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and the wall is 0.2 . The weight of the block is \qquad ?

Q. 23 A heating coil is labelled $100 \mathrm{~W}, 220 \mathrm{~V}$. The coil is cut in half and the two pieces are joined in parallel to the same source. The energy now liberated per second is \qquad ?
Q. 24 In a series LCR circuit $R=200 \Omega$ and the voltage and the frequency of the main supply is 220 V and 50 Hz respectively. On taking out the capacitance from the circuit the current lags behind the voltage by 30°. On taking out the inductor from the circuit the current leads the voltage by 30°. The power dissipated in the LCR circuit is \qquad ?
Q. 25 If the potential function is given by $V=4 x+3 y$, then the magnitude of electric field intensity at the point $(2,1)$ will be ?

Part - B - CHEMISTRY

Q. 26 The wave number of the first line in the Balmer series of hydrogen is $15200 \mathrm{~cm}^{-1}$, What would be the wave number of the first line in the Lyman series of the Be^{3+} ion?
(a) $2.4 \times 10^{5} \mathrm{~cm}^{-1}$
(b) $24.3 \times 10^{5} \mathrm{~cm}^{-1}$
(c) $6.08 \times 10^{5} \mathrm{~cm}^{-1}$
(d) $1.313 \times 10^{6} \mathrm{~cm}^{-1}$
Q. 27 A quantity of heat is confined in a chamber of constant volume. When the chamber is immersed in a bath of melting ice, the pressure of the gas is 1000 torr. Find the temperature when the pressure manometer indicates in absolute pressure of 400 torr.
(a) 109 K
(b) 273 K
(c) 373 K
(d) 0 K
Q. 28 Anhydrous AlCl_{3} is a covalent compound from the data given. Predict whether it will remain covalent or become ionic in an aqueous solution. (Lattice energy of $\mathrm{AlCl}_{3}=5137 \mathrm{~kJ} / \mathrm{mol}$), $\Delta \mathrm{H}$ hydration for $\mathrm{Al}^{3+}=-4665 \mathrm{~kJ} / \mathrm{mol}$, and $\Delta \mathrm{H}$ hydration for $\mathrm{Cl}^{-}=-381 \mathrm{kj} / \mathrm{mol}$.
(a) Ionic
(b) Covalent
(c) Partially ionic
(d) Partially covalent
Q. 29 For $\mathrm{NH}_{4} \mathrm{HS}_{(\mathrm{s})} \rightleftarrows \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$: observed pressure for reaction mixture at equilibrium is 1.12 atm at $106^{\circ} \mathrm{C}$. The value of K_{p} for the reaction is :
(a) $3.316 \mathrm{~atm}^{2}$
(b) $0.316 \mathrm{~atm}^{2}$
(c) $31.36 \mathrm{~atm}^{2}$
(d) $6.98 \mathrm{~atm}^{2}$
Q. 30 The degree of hydrolysis in hydrolytic equilibrium $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HA}+\mathrm{OH}^{-}$at salt concentration of 0.001 M is $\left(\mathrm{K}_{a}=1 \times 10^{-5}\right)$:
(a) 1×10^{-3}
(b) 1×10^{-4}
(c) 5×10^{-4}
(d) 1×10^{-4}
Q. 31 A solution is obtained by dissolving 12 g of urea (molecular weight 60) in a litre of water.

Another solution in obtained by dissolving 68.4 g of cane sugar (molecular weight 342) in a litre of water at the same temperature. The lowering of vapour pressure in the first solution is :
(a) same as that of the second solution
(b) nearly one-fifth of the second solution
(c) double that of the second solution
(d) nearly five times that of the second solution
Q. 32 We have taken a saturated solution of $\mathrm{AgBr} . K_{\text {sp }}$ of AgBr is 12×10^{-14}. If $10^{-7} \mathrm{~mol}$ of AgNO_{3} is added to 1 L of this solution, then the conductivity of this solution in terms of $10^{-7} \mathrm{~S} /$ m units will be :
[Given $\lambda_{\left(\mathrm{Ag}^{+}\right)}^{0}=4 \times 10^{-3} \mathrm{Sm}^{2} / \mathrm{mol} ; \lambda_{(\mathrm{Br})}^{0}=6 \times 10^{-3} \mathrm{Sm}^{2} / \mathrm{mol} ; \lambda_{\left(\mathrm{NO}_{\overline{3}}^{-}\right)}^{0}=5 \times 10^{-3} \mathrm{Sm}^{2} / \mathrm{mol}$]
(a) 39
(b) 55
(c) 15
(d) 41
Q. $33 \quad \mathrm{~A}_{\text {(aq) }} \rightarrow \mathrm{B}_{(\mathrm{aq)}}+\mathrm{C}_{\text {(aq) }}$ is a first-order reaction,
Time
t
Moles of reagent $\quad n_{1}$
∞

Reaction progress is measured with the help of titration with reagent R. If all A, B and C reacted with the reagent and have n factors [n factor; eq. wt. $=(m o l . w t . / n)$] in the ratio of $1: 2: 3$ with the reagent, the k in terms of t, n_{1}, and n_{2} is :
(a) $\mathrm{k}=\frac{1}{\mathrm{t}} \operatorname{In}\left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{2}-\mathrm{n}_{1}}\right)$
(b) $\mathrm{k}=\frac{1}{\mathrm{t}} \operatorname{In}\left(\frac{2 \mathrm{n}_{2}}{\mathrm{n}_{2}-\mathrm{n}_{1}}\right)$
(c) $\mathrm{k}=\frac{1}{\mathrm{t}} \operatorname{In}\left(\frac{4 \mathrm{n}_{2}}{\mathrm{n}_{2}-\mathrm{n}_{1}}\right)$
(d) $\mathrm{k}=\frac{1}{\mathrm{t}} \operatorname{In}\left(\frac{4 \mathrm{n}_{2}}{5\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)}\right)$
Q. 34 Which of the following will be the least reactive towards nucleophilic substitution?
(a)

(b)

(c)

(d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
Q. 35 A molecule can be said to have plane of symmetry if :
(a) It can be divided into two equal halves - one half being the mirror image of the other half
(b) It can be divided into two halves - one half is not the mirror image of the other half
(c) It does not have centre of symmetry
(d) It does not have axis of symmetry
Q. 36 The most unlikely representation of resonance structures of p-nitrophenoxide ion is
(a)

(b)

(c)

(d)

Q. 37 Which of the following is an example of associated colloid?
(a) Protein + water
(b) Soap + water
(c) Rubber + benzene
(d) $\mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{Fe}(\mathrm{OH})_{3}$
Q. 38 Order of the bond strength of $\mathrm{C}-\mathrm{H}$ bonds involvings $s p, s p^{2}$, and $s p^{3}$ hybridized carbon atoms is :
(a) $s p>s p^{2}>s p^{3}$
(b) $s p^{3}>s p^{2}>s p$
(c) $s p^{2}>s p^{3}>s p$
(d) $s p^{2}>s p>s p^{3}$
Q. 39 When
 reacts with $\mathrm{CH}_{3} \mathrm{COO} \cdot \mathrm{Na}^{+}$(excess), the product formed is :
(a)

(b)

(c)

(d)

Q. 40 Which of the following will be obtained by keeping ether in contact with air for a long time ?
(a) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-\mathrm{OH}$
(b) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{OCH}_{2}-\mathrm{OH}$
(c) $\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(d) $\mathrm{CH}_{3}-\mathrm{OCH}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-\mathrm{OH}$
Q. 41 Which is not true about acetophenone?
(a) Reacts to form 2, 4-dinitorphenylhydrazine
(b) Reacts with Tollen's reagent to form silver mirror
(c) Reacts with $\mathrm{I}_{2} / \mathrm{NaOH}$ to form iodoform
(d) On oxidation with alkaline KMnO_{4} followed by hydrolysis gives benzoic acid
Q. 42 A primary amine forms an amide by the treatement of bromine and alkali. The primary amine has:
(a) 1 carbon atom less than amide
(b) 1 carbon atom more than amide
(c) 1 hydrogen atom less than amide
(d) 1 hydrogen atom more than amide
Q. 43 Empirical formula of a compound is $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$ and its molecular weight is 90 . Molecular formula of the compound is:
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
(b) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
(c) $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$
(d) $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{O}$
Q. 44 Rayon is :
(a) natural silk
(b) artificial silk
(c) natural plastic or rubber
(d) synthetic plastic
Q. 45 There is mixture of Cu (II) chloride and Fe (II) sulphate. The best way to separate the metal ions from this mixture in qualitative analysis is :
(a) hydrogen sulphide in acidic medium, where only $\mathrm{Cu}(\mathrm{II})$ sulphide will be precipitated
(b) ammonium hydroxide buffer, where only Fe (II) hyroxide will be precipitated
(c) hydrogen sulphide in acidic medium, where only $\mathrm{Fe}(\mathrm{II})$ sulphide will be precipitated
(d) ammonium hydroxide buffer, where only $\mathrm{Cu}(\mathrm{II})$ hydroxide will be precipiated
Q. 46 The molarity of Cl in an aqueous solution which was $(w / V) 2 \% \mathrm{NaCl}, 4 \% \mathrm{CaCl}_{2}$, and $6 \% \mathrm{NH}_{4} \mathrm{Cl}$ will be :
Q. 47 The number of electrons that are paired in oxygen molecule is :
Q. $48 \quad \mathrm{~A}_{2} \mathrm{~B}$ molecules (molar mass $=259.8 \mathrm{~g} / \mathrm{mol}$) crystallizes in a hyxagonal lattice as shown in the figure. The lattice constant were $a=5 \AA$ and $b=8 \AA$. If the density of crystal is $5 \mathrm{~g} / \mathrm{cm}^{3}$, the
how many molecules are contained in the given unit cell?
(Use $\mathrm{N}_{\mathrm{A}}=6 \times 10^{23}$)
Q. 49 Oxidation states of vanadium in
$\mathrm{V} \rightarrow \mathrm{V}^{2+}+2 \mathrm{e}$,
$\mathrm{V}^{2+} \rightarrow \mathrm{V}^{3+}+\mathrm{e}$, are 2 and 3 respectively. The oxidation states of vanadium in this following
reaction: $\mathrm{V}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}^{2+}+2 \mathrm{H}^{+}+\mathrm{e}$?
Q. 50 Antimony reacts with sulphur according to the equation
$2 \mathrm{Sb}(\mathrm{s})+3 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{Sb}_{2} \mathrm{~S}_{3}(\mathrm{~s})$ The molar mass of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ is $340 \mathrm{~g} \mathrm{~mol}^{-1}$
What is the percentage yield for a reaction in which $1.40 \mathrm{~g} \mathrm{of}_{\mathrm{Sb}_{2} \mathrm{~S}_{3} \text { is btained from } 1.73 \mathrm{~g} \text { of }}$ antimony and a slight excess of sulphur?

Part - C - MATHEMATICS

Q. 51 If the ratio of the sums to n terms of two AP's is $(5 n+3):(3 n+4)$, then the ratio of their $17^{\text {th }}$ terms is
(a) $172: 99$
(b) $168: 103$
(c) $175: 99$
(d) $171: 103$
Q. 52 If roots of the quadratic equation $a x^{2}+b x+c=0$ with real coefficients are complex, then imaginary part of the roots is
(a) $\frac{ \pm \sqrt{b^{2}+4 a c}}{2 a}$
(b) $\frac{ \pm \sqrt{b^{2}-4 a c}}{a}$
(c) $\frac{ \pm \sqrt{4 a c-b^{2}}}{2 a}$
(d) none of these
Q. 53 If distance of z_{1} from the origin is 4 and distance of $z_{1} z_{2}$ from the origin is 2 then distance of z_{2} from the origion is
(a) 2
(b) 6
(c) 8
(d) none of these
Q. 54 Let A and B be two matrices such that they commute then for any positive integer n.
(i) $\mathrm{AB}^{n}=\mathrm{B}^{n} \mathrm{~A}$
(ii) $(\mathrm{AB})^{n}=\mathrm{A}^{n} \mathrm{~B}^{n}$
(a) Only (a) is correct
(b) both (a) and (b) are correct
(c) only (b) is correct
(d) none of (a) and (b) are correct
Q. 55 Let a, b, and c be the real numbers. Then the following system of equations in $x . y$, and z, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1,-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ has
(a) no solution
(b) unique solution
(c) infinitely many solution
(d) finitely many solutions.
Q. 56 If the pair of lines $a x^{2}+2(a+b) x y+b y^{2}=0$ lies along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sectors, then
(a) $3 a^{2}-2 a b+3 b^{2}=0$
(b) $3 a^{2}-10 a b+3 b^{2}=0$
(c) $3 a^{2}+2 a b+3 b^{2}=0$
(d) $3 a^{2}+10 a b+3 b^{2}=0$
Q. 57 Let L be a normal to the parabola $y^{2}=4 x$. If L passes through the point $(9,6)$, then which of the following is not the equation of L ?
(a) $y-x+3=0$
(b) $y+3 x-33=0$
(c) $y+x-15=0$
(d) $y-2 x+12=0$
Q. 58 Two circles are given such that one is completely lying inside other without touching. Then locus of centre of variable circle which touches smaller circle from outside and bigger circle from inside is
(a) ellipse
(b) hyperbola
(c) parabola
(d) circle
Q. 59 The locus of the foot of the perpendicular from the centre of the hyperbola $x y=1$ on a variable tangent is
(a) $\left(x^{2}-y^{2}\right)^{2}=4 x y$
(b) $\left(x^{2}+y^{2}\right)^{2}=2 x y$
(c) $\left(x^{2}+y^{2}\right)=4 x y$
(d) $\left(x^{2}+y^{2}\right)^{2}=4 x y$
Q. $60 \quad$ If R and R ' are symmetric relations (not disjoint) on a set A , then the relation $R \cap R$ 'is
(a) reflexive
(b) symmetric
(c) transitive
(d) none of these
Q. 61 Which of the following functions is an even functions?
(a) $f(x)=\frac{a^{x}+a^{-x}}{a^{x}-a^{-x}}$
(b) $f(x)=\frac{a^{x}+1}{a^{x}-1}$
(c) $f(x)=x \frac{a^{x}-1}{a^{x}+1}$
(d) $f(x)=\log _{2}\left(x+\sqrt{x^{2}+1}\right)$
Q. 62 If $f(x)=\lim _{n \rightarrow \infty} n\left(x^{1 / n}-1\right)$. The for $x>0, y>0, f(x, y)$ is equal to
(a) $f(x) f(y)$
(b) $f(x)+f(y)$
(c) $f(x)-f(y)$
(d) none of these
Q. 63 If $y=\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a\left(a^{2}-3 x^{2}\right)}\right)$, then $\frac{d y}{d x}=$
(a) $\frac{3 a^{2}}{a^{2}+x^{2}}$
(b) $\frac{3 a}{a^{2}+x^{2}}$
(c) $\frac{a}{a^{2}+x^{2}}$
(d) $\frac{3}{a^{2}+x^{2}}$
Q. 64 Given $f(x)$ is a function such that $f(x)=\left[\begin{array}{ll}x^{a} \sin \frac{1}{x} & \text { if } x>0 \\ 0 & \text { if } x=0\end{array}\right]$ where α is a constant.
$f(x)$ is a derivable $\forall x \geq 0$. then the least integral value of α is
(a) 1
(b) 0
(c) 2
(d) none of these
Q. 65 Given $g(x)=\frac{x+2}{x-1}$ and the line $3 x+y-10=0$, then the line is
(a) tangent to $g(x)$
(b) normal to $g(x)$
(c) chord of $g(x)$
(d) none of these
Q. $66 \int \frac{\sin x+\cos x}{\sin (x-\alpha)} d x$ is equal to
(a) $(\cos \alpha-\sin \alpha)(x-\alpha)+(\cos \alpha+\sin \alpha) \log |\sin (x-\alpha)|+c$
(b) $(\cos \alpha+\sin \alpha)(x-\alpha)-(\cos \alpha-\sin \alpha) \log |\sin (x-\alpha)|+c$
(c) $(\cos \alpha+\sin \alpha)(x+\alpha)+(\cos \alpha-\sin \alpha) \log |\sin (x+\alpha)|+c$
(d) none of these
Q. 67 The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4$, $y=4$ and the coordinate axes. If $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ are respectively the then, $\mathrm{S}_{1}: \mathrm{S}_{2}: \mathrm{S}_{2}$ is \qquad ?
(a) $1: 2: 3$
(b) $1: 2: 1$
(c) $1: 1: 1$
(d) $2: 1: 2$
Q. 68 The minimum value of the expression $\sin \alpha+\sin \beta+\sin \gamma \cdot$ where α, β, γ are real number satisfying $\alpha+\beta+\gamma=\pi$ is \qquad ?
(a) positive
(b) zero
(c) negative
(d) -3
Q. 69 The range of values of p for which the equation $\sin \cos ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right)=p$ has a solution is \qquad ?
(a) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(b) $[0,1)$
(c) $\left[\frac{1}{\sqrt{2}}, 1\right)$
(d) $(-1,1)$
Q. 70 For a regular polygon, Let r and R be the radii of the inscribed and the circumscribed circles. A false statements among the following is \qquad ?
(a) There is a regular polygon with $\frac{r}{R}=\frac{\sqrt{3}}{2}$
(b) There is a regular polygon with $\frac{r}{R}=\frac{1}{2}$
(c) There is a regular polygon with $\frac{r}{R}=\frac{1}{\sqrt{2}}$
(d) There is a regular polygon with $\frac{r}{R}=\frac{2}{3}$
Q. 71 Consider the frequency distribution of the given numbers

Value	1	2	3	4
Frequency	5	4	6	f

Q. 72 Number of ordered pair(s), (a, b) for each of which the equality, a $(\cos x-1)+b^{2}=\cos \left(a x+b^{2}\right)-1$ hold true for all $x \in R$ are ?
Q. 73 A closed vessel tapers to a point both at its top E and its bottom F and is fixed with $E F$ vertical when the depth of the liquid in it is $x \mathrm{~cm}$, the volume of the liquid in it $x^{2}(15-x) \mathrm{cu} . \mathrm{cm}$. The length $E F$ is \qquad ?
Q. 74 If the sum of 99 terms of AP is 198 , then the value of the 50 th term is \qquad ?
Q. 75 Five balls of different colours are to be placed in three boxes of different sizes. Each box can hold all five balls. In how may ways can we place the balls so that no box reamins empty ?

