## Aggarwa CLASSES

## JEE (MAIN)

## TEST PAPER

SUBJECT : PHYSICS,CHEMISTRY, MATHEMATICS

## ANSWER PAPER

TIME : 3 HRS
MARKS: 300

## INSTRUCTIONS

## GENERAL INSTRUCTIONS :

1. This test consists of 75 questions.
2. There are three parts in the question paper A, B, C consisting of Physics, Chemistry and Mathematics having 25 questions in each part.
3. 20 questions will be Multiple choice questions \& 5 quetions will have answer to be filled as numerical value.
4. Marking scheme :

| Type of <br> Questions | Total Number <br> of Questions | Correct <br> Answer | Incorrect <br> Answer | Unanswered |
| :---: | :---: | :---: | :--- | :--- |
| MCQ's <br> Numerical Values | 5 | +4 | Minus One Mark(-1) | NoMark (0) |
|  | +4 | No Mark (0) | NoMark (0) |  |

5. There is only one correct responce for each question. Filling up more than one responce in each question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 4 above.

## OPTICAL MARK RECOGNITION (OMR) :

6. The OMR will be provided to the students.
7. Darken the appropriate bubbles on the OMR sheet by applying sufficient pressure.
8. The OMR sheet will be collected by the invigilator at the end of the examination.
9. Do not tamper with or mutilate the OMR. Do not use the OMR for rough work.
10. Write your name, Batch name, name of the center, Test Code, roll number and signature with pen in the space provided for this purpose on the OMR. Do not write any of these details anywhere else on the OMR.

## DARKENING THE BUBBLES ON THE OMR :

11. Use a BLACK BALL POINT PEN to darken the bubbles on the OMR.
12. Darken the bubble COMPLETELY.
13. Darken the bubbles ONLY IF you are sure of the answer. There is NO WAY to erase or "un- darken" a darkened bubble.

## Part A - PHYSICS

Q. 1 A vector $\vec{a}$ makes an angle $30^{\circ}$ and $\overrightarrow{\mathrm{b}}$ makes an angle $120^{\circ}$ with X -axis. The magnitude of these vectors are 9 unit and 12 unit respectively. The magnitude of resultant vector is
(a) 23 unit
(b) 4 unit
(c) 15 unit
(d) 3 unit

Ans: (c)
Sol: $\quad \theta=120^{\circ}-30^{\circ}=90^{\circ}$
$\therefore|\mathrm{R}|=\sqrt{9^{2}+12^{2}+2 \times 9 \times 12 \cos 90^{\circ}}=15$ units
Q. 2 A ball of mass $m$ is moving towards a batsman at a speed $v$. The batsman strikes the ball and deflects it by an angle $\theta$ without changing its speed. The impulse imparted to the ball is given by
(a) $m v \cos \theta$
(b) $m v \sin \theta$
(c) $2 \operatorname{mvcos}\left(\frac{\theta}{2}\right)$
(d) $2 m v \sin \left(\frac{\theta}{2}\right)$

Ans: (d)
Sol: Impulse=change in momentum $=P_{f}-P_{i}$
Resultant of two vectors having same magnitude and angle separated $\theta$ is,
$\mathrm{R}=2 \mathrm{~A} \cos \frac{\theta}{2}$
$\therefore$ Here, $\mathrm{I}=2 \mathrm{mv} \cos \frac{(180-\theta)}{2}=2 \mathrm{mv} \sin \frac{\theta}{2}$
Q. 3 At the highest point of the path of a projectile,
(a) kinetic energy is maximum
(b) potential energy is minimum
(c) kinetic energy is minimum
(d) total energy is maximum.

Ans: (c)
Sol: At the highest point of the path, potenial energy is maximum, so the kinetic energy will be minimum.
Q. 4 A sphere ' $P$ ' of mass ' $m$ ' moving with velocity $10 \mathrm{~m} / \mathrm{s}$ collides head-on with another sphere ' $Q$ ' of mass ' $m$ ' which is moving with $8 \mathrm{~m} / \mathrm{s}$. The ratio of final velocity of ' $Q$ ' to initial velocity of ' P ' is ( $\mathrm{e}=$ coefficient of restitution)
(a) $\frac{e-9}{10}$
(b) $\left[\frac{e-9}{10}\right]^{1 / 2}$
(c) $\frac{e+9}{10}$
(d) $\left[\frac{e+9}{10}\right]^{2}$

Ans: (c)
Sol: Initial momentum $=\mathrm{mu}_{1}+\mathrm{mu}_{2}$
Final momentum $=m v_{1}+m v_{2}$
$\therefore \mathrm{mu}_{1}+\mathrm{mu}_{2}=\mathrm{mv}_{1}+\mathrm{mv}_{2}$
$\therefore \mathrm{v}_{1}=18-\mathrm{v}_{2}$
$\because \mathrm{e}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\mathrm{u}_{1}-\mathrm{u}_{2}}$
$\therefore \mathrm{e}=\frac{\mathrm{v}_{2}-\left(18-\mathrm{v}_{2}\right)}{\mathrm{u}_{1}-\mathrm{u}_{2}}=\frac{2 \mathrm{v}_{2}-18}{2}=\mathrm{v}_{2}-9$
$\therefore \frac{\mathrm{v}_{2}}{\mathrm{u}_{1}}=\frac{\mathrm{e}+9}{10}$
Q. 5 Assertion: Speed of innerlayers of a whirlwind in a tornadois alarmingly high. Reason: Moment of inertia is low about tornado's axis of rotation.
(a) Assertionis true, Reason is True

Reason is a correct explanation for Assertion
(b) Assertion is True, Reason is True;

Reason is not a correct explanation for Assertion
(c) Assertion is True, Reason is False.
(d) Assertion is False, Reason is True.

Ans: (a)
Sol: In a whirl wind, air from surrounding regions concentrate in small space. Hence, M.I. decreases. As angular momentum is conserved, decrease in M.I. leads to increase in $\omega$.
Q. 6 The pans of a physical balance are in equilibrium. Air is blown under the right hand pan; then the right hand pan will
(a) move up
(b) move down
(c) move erratically
(d)remain at the same level

Ans: (b)
Sol: The blowing of air under the pan causes low pressure under it. As the pressure at the upper side of pan is more, this difference in pressure displacesthe pan vertically down.
Q. 7 The net force acting on a water molecule when it is situated at surface, middle and bottom layer of water placed in an open glass container in air is repectively (neglecting effect of gravity)
(a) zero, non-zero, zero.
(b) non-zero, zero, zero
(c) non-zero, zero, non-zero
(d) zero, zero, non-zero

Ans: (c)
Sol: As, force of adhesion due to air molecules above the water surface is negligible, for a water molecule situated at this surface, there exists net non-zero force acting in downward direction. For the molecule in middle layer of water, equal forces of cohension act along all directions onit giving rise to zero net force. For the bottom layer molecule, the adhesive force exerted by glass molecles is greater than the cohesive force exerted by water molecules. Hence, anet non-zero downward force acts on the bottom layer molecule.
Q. $8 \quad 60 \mathrm{~g}$ of ice at $0^{0}$ is mixed with 60 g of steam at $100^{\circ} \mathrm{C}$. At thermal equilibrium, the mixture contains (Latent heat of steam and ice are $540 \mathrm{cal} \mathrm{g}^{-1}$ and
$80 \mathrm{cal} \mathrm{g}^{-1}$ respectively, specific heat of water=1 cal g ${ }^{-1} \mathrm{C}^{-1}$ )
(a) 80 g of water and 40 g of steam at $100^{\circ} \mathrm{C}$
(b) 120 g of water at $90^{\circ} \mathrm{C}$
(c) 120 g of water at $100^{\circ} \mathrm{C}$
(d) 40 g of steam and 80 g of water at $0^{\circ} \mathrm{C}$

Ans: (a)
Sol: Heat required to melt ice $=m_{i} L_{i}$

$$
=60 \times 80=4800 \mathrm{cal}
$$

Heat required to change the temperature of water at $100^{\circ} \mathrm{C}$ (steam)
$=\mathrm{m}_{\mathrm{s}} \mathrm{c}_{\mathrm{w}} \Delta \theta$
$=601 \times(100-0)$
$=6000 \mathrm{cal}$
$\therefore$ Total heat $\mathrm{Q}_{1}=10800 \mathrm{cal}$
Now, heat required to condense 60 g of steam
$\mathrm{Q}_{2}=60 \times 540=32400 \mathrm{cal}$
as $Q_{2}>Q_{1}$
whole 60 g of steam does not get condensed.
$\therefore$ temperature of mixture remains $100^{\circ} \mathrm{C}$
But $\mathrm{Q}_{1}$ amount of heat condenses mg of steam
$\therefore \mathrm{M}=\frac{\mathrm{Q}_{1}}{\mathrm{~L}_{\mathrm{s}}}=\frac{10800}{540}=20 \mathrm{~g}$
Hence out of $60 \mathrm{~g}, 20 \mathrm{~g}$ of steam is converted into water
$\therefore$ mixture contains 40 g of steam and $120-40=80 \mathrm{~g}$ of water.
Q. 9 One mole of an ideal monoatomic gas undergoes a process described by the equation $\mathrm{PV}^{3}=$ constant. The heat apacity of the gas during this process is
(a) $R$
(b) $\frac{3}{2} R$
(c) $\frac{5}{2} R$
(d) $2 R$

Ans: (a)
Sol: Given, $\mathrm{PV}^{3}=$ constant
This is a polytropic process with $\mathrm{n}=3$.
$\therefore$ specific heat capacity,
$\mathbf{C}=\mathbf{C v}+\frac{\mathrm{R}}{1-\mathrm{n}}$
$=\frac{\mathrm{R}}{\gamma-1}+\frac{\mathrm{R}}{1-\mathrm{n}}$
$=\frac{\mathrm{R}}{\frac{5}{3}-1}+\frac{\mathrm{R}}{1-3}$
$\ldots . .\left(\because \gamma_{\text {mono }}=\frac{5}{3}\right)$
$\therefore \mathrm{C}=\mathrm{R}$
Q. 10 An ideal gas having f degrees of freedom is isobarically heated. the ratio of the work done by it to the change in its internal energy will be
(a) $\frac{2}{f-2}$
(b) $\frac{f-2}{2}$
(c) $\frac{2}{f}$
(d) $\frac{f}{2}$

Ans: (c)

Sol: $\frac{\Delta \mathrm{W}}{\Delta \mathrm{U}}=\frac{\left(\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}\right) \Delta \mathrm{T}}{\mathrm{C}_{\mathrm{v}} \Delta \mathrm{T}}$

$$
\begin{aligned}
& =\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}-1=\gamma-1 \\
& =\left(1+\frac{2}{\mathrm{f}}\right)-1=\frac{2}{\mathrm{f}}
\end{aligned}
$$

Q. 11 Two particles each of mass 10 g and charge $10 \mu \mathrm{C}$ are at some distance from each other on a horizontal surface. If the coefficient of static friction between each particle and horizontal surface is 0.5 , then what is the distance between them if they are in limitting equilibrium? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 3.21 m
(b) 1.5 m
(c) 10.32 m
(d) 4.24 m

Ans: (d)
Sol: The electric forceon one particledue to other

$$
=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{qq}}{\mathrm{r}^{2}}=\frac{9 \times 10^{9} \times\left(10 \times 10^{-6}\right)^{2}}{(\mathrm{x})^{2}} \mathrm{~N}
$$

The frictional force in limiting case $=\mu_{\mathrm{s}} \mathrm{mg}$
$=0.5 \times 10 \times 10^{-3} \times 10$
$=0.05 \mathrm{~N}$

$$
\begin{gathered}
\therefore \frac{9 \times 10^{9} \times\left(10 \times 10^{-6}\right)^{2}}{(\mathrm{x})^{2}}=0.05 \\
\mathrm{x}^{2}=\frac{9 \times 10^{9} \times 10^{-10}}{0.05} \\
=\frac{90}{5} \\
\mathrm{x}=\sqrt{18}=4.24
\end{gathered}
$$

Q. 12 When three capacitors of equal capacities are connected in parallel and one capacitor of the same capacity is connected in series with its combination. The resultant capacity is $3.75 \mu \mathrm{~F}$. The capacity of each capacitor is
(a) $5 \boldsymbol{\mu F}$
(b) $6 \mu \mathrm{~F}$
(c) $7 \mu \mathrm{~F}$
(d) $8 \boldsymbol{\mu F}$

Ans: (a)

Sol:


$$
\begin{aligned}
& \mathrm{C}_{\mathrm{eq}}=\frac{3 \mathrm{C} \times \mathrm{C}}{3 \mathrm{C}+\mathrm{C}} \\
& \therefore \quad 3.75=\frac{3 \mathrm{C}^{2}}{4 \mathrm{C}} \\
& \therefore \quad 3.75=\frac{3 \mathrm{C}}{4} \\
& \therefore \quad
\end{aligned} \quad \mathrm{C}=\frac{3.75 \times 4}{3}=5 \mu \mathrm{~F} \text {. }
$$

Q. 13 A circuit contains an ammeter, a battery of 30 V and resisitance 40.8 ohm all connected in series. If the ammeter has a coil resisitance 480 ohm and a shunt of 20 ohm, the reading in the ammeter will be:
(a) 1 A
(b) 0.5 A
(c) 0.25 A
(d) 2 A

Ans: (b)
Sol:


Here combination of $(480 \Omega|\mid 20 \Omega)$ is n series with $40.8 \Omega$
$\mathrm{R}_{\text {eff }}=40.8+\frac{480 \times 20}{480+20}=40.8+19.2=60 \Omega$
$\mathrm{I}=\frac{\mathrm{V}_{\text {eff }}}{\mathrm{R}_{\text {eff }}}=\frac{30}{60}=0.5 \mathrm{~A}$
Q. 14 The deflection of galvanometerfalls from 60 to 20 , when $15 \Omega$ shunt is connected across it.The galvanometer resistance is
(a) $15 \Omega$
(b) $24 \Omega$
(c) $30 \Omega$
(d) $48 \Omega$

Ans: (c)
Sol: $\quad \mathrm{n}=\frac{60}{20}=3, \mathrm{~S}=\frac{\mathrm{G}}{\mathrm{n}-1}=\frac{\mathrm{G}}{3-1} \Rightarrow \mathrm{~S}=\frac{\mathrm{G}}{2}$
$\therefore 2 \mathrm{~S}=\mathrm{G}=2 \times 15=30 \Omega$
Q. 15 The orbital speed of an electron orbiting around the nucleus in a circular orbit of radius $r$ is $v$. Then the magnetic dipole moment of the electron will be
(a) evr
(b) $\frac{e v r}{2}$
(c) $\frac{e v}{2 r}$
(d) $\frac{v r}{2 e}$

Ans: (b)
Sol: Magnetic dipole moment, $\mathrm{M}=\mathrm{iA}$

$$
=\frac{\mathrm{e}}{\mathrm{~T}} \times \pi \mathrm{r}^{2}
$$

$=\frac{\mathrm{e}}{\left(\frac{2 \pi \mathrm{r}}{\mathrm{v}}\right)} \times \pi \mathrm{r}^{2}$

$$
\left[\because \mathrm{T}=\frac{2 \pi \mathrm{r}}{\mathrm{v}}\right]
$$

$\therefore \mathrm{M}=\frac{\mathrm{evr}}{2}$
Q. 16 One require 11 eV of energy to dissociate a carbon monoxide molecule into carbon and oxygen atoms. The minimum frequency of the appropriate electromagnetic radiation to achieve the dissociation lies in
(a) visible region
(b) infrared region
(c) ultraviolet region
(d) microwave region

Ans: (c)
Sol: $\quad \mathrm{E}=\mathrm{hv}, \mathrm{E}=11 \mathrm{eV}=11 \times 1.6 \times 10^{-19} \mathrm{~J}$
$\therefore \mathrm{v}=\frac{\mathrm{E}}{\mathrm{h}}=\frac{11 \times 1.6 \times 10^{-19}}{6.62 \times 10^{-34}}=2.65 \times 10^{15} \mathrm{~Hz}$
This frequency value belongs to UV region.
Q.17 A concave lens of glass refractive index 1.5 has both surfaces of the same radius of curvature $R$. On immersion in medium of refractive index 1.75 , it will behave as a
(a) convergent lens of focal length 3.5 R
(b) convergent lens of focal length 3.0 R .
(c) divergent lens of focal length 3.5 R .
(d) divergent lens of focal length 3.0R.

Ans: (a)
Sol: $\quad \frac{1}{\mathrm{f}}=\left(\frac{\mu_{2}-\mu_{1}}{\mu_{1}}\right)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)$
For concave lens, $\mathrm{R}_{1}=-\mathrm{R}$,
$R_{2}=R_{1}=R$
$\mu_{2}=1.5, \mu_{1}=1.75$
$\therefore \frac{1}{\mathrm{f}}=\left(\frac{1.5-1.75}{1.75}\right)\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)$
$=\left(\frac{0.25}{1.75}\right)\left(\frac{2}{\mathrm{R}}\right)$
$\therefore \mathrm{f}=+3.5 \mathrm{R}$
Q. 18 In Young's double slit experiment, bichromatic light of wavelengths $\mathbf{6 0 0} \mathbf{~ n m}$ and 840 nm are used. The distance between the slits is 0.12 nm and the distance between the plane of the slits and the screen is 120 cm . The minimum distance between two successive region of complete darkness is
(a) 42 mm
(b) 5.6 mm
(c) 14 mm
(d) 28 mm

Ans: (a)
Sol: If $\mathrm{n}^{\text {th }}$ minima of 600 nm coincides with $\mathrm{m}^{\text {th }}$ minima of 840 nm then,
$\frac{(2 \mathrm{n}+1) \mathrm{D}(600)}{2 \mathrm{~d}}=\frac{(2 \mathrm{~m}+1) \mathrm{D}(840)}{2 \mathrm{~d}}$
$\therefore \frac{2 \mathrm{n}+1}{2 \mathrm{~m}+1}=\frac{7}{5}$
For the values of $n=3$ and $m=2$, the above condition is satisfied.
For $y_{1}$ as distance of $1^{\text {st }}$ minimum,
$\mathrm{y}_{1}=\frac{(2 \mathrm{n}+1) \lambda \mathrm{D}}{2 \mathrm{D}}$
$\therefore \mathrm{y}_{1}=\frac{[2(3)+1] \times(1.2)\left(600 \times 10^{-9}\right)}{2 \times\left(0.12 \times 10^{-3}\right)}=21 \mathrm{~mm}$
The next values that satisfies equation (i) are $\mathrm{n}=10$ and $\mathrm{m}=7$.
$\therefore \mathrm{y}_{2}=\frac{[2(10)+1] \times(1.2)\left(600 \times 10^{-9}\right)}{2 \times\left(0.12 \times 10^{-3}\right)}=63 \mathrm{~mm}$
Required distance $=\therefore \mathrm{y}_{2}-\mathrm{y}_{1}=(63-21)=42 \mathrm{~mm}$
Q. 19 In $\beta$-decay, the subatomic particles that are emitted can be
(a) positively charged
(b) negatively charged
(c) neutral
(d) any of these

Ans: (d)
Sol: In $\beta$-decay, radioactive nucleus emits an electron or positron and a neutrino. Hence, emitted particles can be negatively or positively charged or neutral.
Q. 20 What is the output $Y$ in the following circuit, when all the three inputs $A, B, C$ are first 0 and then 1 ?

(a) 1,1
(b) 0,1
(c) 0,0
(d) 1,0

Ans: (d)
Sol:


| A | B | $(\mathrm{A}, \mathrm{B})$ | c | $\mathrm{Y}=\overline{(\mathrm{A.B}) . \mathrm{C}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 |

Q. 21 Figure given shows a sinusodial wave on a string. If the frequency of the wave is 200 Hz and the mass per unit length of the string is $0.2 \mathrm{~g} / \mathrm{m}$, the power transmitted by the wave is $\qquad$ ?
Sol: Given:
Mass per unit length of the string,
$\mu=0.2 \mathrm{~g} / \mathrm{m}=0.2 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$


Frequency of the wave, $\mathrm{A}=0.06 \mathrm{~m}$ and
$\frac{5}{2} \lambda=20 \mathrm{~cm}$
$\therefore$ Wavelength of the wave, $\lambda=\frac{40}{5} \mathrm{~cm}$

$$
\begin{aligned}
& =8 \mathrm{~cm} \\
& =8 \times 10^{-2} \mathrm{~m}
\end{aligned}
$$

Velocity of the wave, $v=v \lambda=200 \times 8 \times 10^{-2}$

$$
=16 \mathrm{~m} / \mathrm{s}
$$

The power transmitted by the wave is
$\mathrm{P}=2 \pi^{2} \mathrm{v}^{2} \mathrm{~A}^{2} \mu \mathrm{v}$
Substituing the given values, we get

$$
\begin{aligned}
\mathrm{P} & =2 \times(3.14)^{2} \times(200)^{2} \times(0.06)^{2} \times\left(0.2 \times 10^{-3}\right) \times 16 \\
& =9.09 \mathrm{~W} .
\end{aligned}
$$

Q. 22 The percentage decrease in the accleration due to the gravity at a depth of 160 km below the surface of the earth is (Given that radius of the earth is $R=6400 \mathrm{~km}$ )

Sol: $\quad g^{\prime}=g\left(1-\frac{d}{R}\right)$

$$
\begin{aligned}
& =g\left(1-\frac{160}{6400}\right) \\
& =g\left(1-\frac{1}{40}\right)=\frac{39 g}{40}
\end{aligned}
$$

$\therefore \mathrm{g}-\mathrm{g}^{\prime}=\mathrm{g}-\frac{39 \mathrm{~g}}{40}=\frac{\mathrm{g}}{40}$
$\therefore \frac{\mathrm{g}-\mathrm{g}^{\prime}}{\mathrm{g}} \times 100=\frac{\mathrm{g}}{40} \times \frac{100}{\mathrm{~g}}=2.5 \%$
Q. 231 cc of water is taken from the surface to the bottom of the ocean 8 km deep. If volume elasticity of water is 24,000 atmosphere, then the change in volume of water will be?

Sol: $\quad K=\frac{P}{d V / V}=\frac{h \rho g V}{d V}$
$\therefore \mathrm{dV}=\frac{\mathrm{h} \rho \mathrm{gV}}{\mathrm{K}}=\frac{8 \times 10^{5} \times 1 \times 980 \times 1}{24000 \times 10^{5} \times 10}=0.033 \mathrm{cc}$
Q. 24 A particle performs S.H.M with amplitude 25 cm and period 3 s . The minimum time required for it to move between two points 12.5 cm on either side of the mean position is $\qquad$ ?

Sol: $\quad \mathrm{OP}=\mathrm{A}=25 \mathrm{~cm}$ and $\mathrm{OQ}=\frac{\mathrm{A}}{2}=12.5 \mathrm{~cm}$
$\Rightarrow \angle \mathrm{OPQ}=30^{\circ}$
Similarly $\angle \mathrm{MNQ}=30^{\circ}$
$\therefore \quad \angle \mathrm{PON}=60^{\circ}=\frac{\pi}{3}$
$\therefore \omega t=\frac{\pi}{3}$
$\therefore \frac{2 \pi}{\mathrm{~T}} \times \mathrm{t}=\frac{\pi}{3}$
$\therefore \mathrm{t}=\frac{\mathrm{T}}{6}=\frac{3}{6}=0.5 \mathrm{~s}$
Q. 25 The radius of a uniform wire is $r=0.021 \mathrm{~cm}$.the value of $\pi$ is given to be 3.142. What is the area of cross section of the wire upto approximate significant figures?

Sol: $\quad$ Area, $\mathrm{A}=\pi \mathrm{r}^{2}=3.142 \times(0.021)^{2}$

$$
=0.00138562 \mathrm{~cm}^{2}
$$

There are only two significant figures in 0.021 cm . Hence the result must be rounded off to two significant figures i.e., $\mathrm{A}=0.0014 \mathrm{~cm}^{2}$

## Part - B - CHEMISTRY

Q. 26 $\qquad$ are the smallest particles of matter was one of the assumptions of Dalton's atomic theory.
(a)Atoms
(b) Molecules
(c) Ions
(d) Elements

Ans: (a)
Q. 27 The energy of a photon is calculated by
(a) $E=h \cup$
(b) $E=\frac{h}{v}$
(c) $E=v \lambda$
(d) $E=\frac{h \lambda}{c}$

Ans: (a)
Q. 28 The group having isoelectronic species is $\qquad$ _.
(a) $\mathbf{O}^{2-}, \mathbf{F}^{-}, \mathrm{Na}^{+}, \mathbf{M g}^{2+}$
(b) $\mathrm{O}^{-}, \mathrm{F}^{-}, \mathrm{Na}, \mathrm{Mg}^{+}$
(c) $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}, \mathrm{Mg}^{2+}$
(d) $\mathrm{O}^{-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathbf{M g}^{\mathbf{2 +}}$

Ans: (a)
Sol: Isoeletronic species have same number of electrons.

| Species | $\mathrm{O}^{2-}$ | $\mathrm{F}^{-}$ | $\mathrm{Na}^{+}$ | $\mathrm{Mg}^{2+}$ |
| :---: | :---: | :---: | :---: | :---: |
| Z | 8 | 9 | 11 | 12 |
| Ch arg e | -2 | -1 | +1 | +2 |
| Total no. of electrons | 10 | 10 | 10 | 10 |

Q. 29 Predict the CORRECT order among the following $\qquad$ ,
(a) bond pair-bond pair> lone pair-bond pair> lone pair-lone pair
(b) lone pair- bond pair> bond pair-bond pair> lone pair -lone pair
(c) lone pair-lone pair > lone pair-bond pair> bond pair-bond pair
(d) lone pair- lone pair bond pair-bond pair> lone pair - bond pair

Ans: (c)
Sol: The forces of repulsion between electron pairs decrease in the following order:
lone pair- lone pair> lone pair- bond pair> bond pair- bond pair
Q. 30 For a sample of perfect gas when its pressure is changed isothermally from $P_{i}$ to $P_{f}$, the entropy change is given by
(a) $\Delta \mathbf{S}=\mathbf{R T} \operatorname{In}\left(\frac{\mathbf{P}_{\mathbf{i}}}{\mathbf{P}_{\mathrm{f}}}\right)$
(b) $\Delta \mathrm{S}=\mathrm{nR} \operatorname{In}\left(\frac{\mathbf{P}_{\mathbf{f}}}{\mathbf{P}_{\mathrm{i}}}\right)$
(c) $\Delta S=n R \operatorname{In}\left(\frac{\mathbf{P}_{i}}{\mathbf{P}_{\mathrm{f}}}\right)$
(d) $\Delta \mathbf{S}=\mathbf{n R T} \operatorname{In}\left(\frac{\mathbf{P}_{\mathbf{f}}}{\mathbf{P}_{\mathrm{i}}}\right)$

Ans: (c)
Sol: The entropy change of a system in a process is equal to the amount of heat transfferred to it in a reversible manner divided by the temperature at which the process occurs.
$\therefore \quad \Delta \mathrm{S}=\frac{\mathrm{q}_{\mathrm{rev}}}{\mathrm{T}}$
Now, $q_{\text {rev }}$ for an isothermal changes given as:
$q_{\text {rev }}=-w=n R T \operatorname{In}\left(\frac{P_{i}}{P_{f}}\right)$

$$
\begin{aligned}
\therefore \quad \Delta \mathrm{S} & =\frac{\mathrm{nRT} \operatorname{In}\left(\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{f}}}\right)}{\mathrm{T}} \\
& =\mathrm{nR} \operatorname{In}\left(\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{f}}}\right)
\end{aligned}
$$

Q. 31 Assertion: All Arrehenius acids are also Bronsted acids but all Arrehenius bases are not Bronsted bases.
Reason: An Arrehenius base is a substance which gives $\mathbf{O H}^{-}$ion in the solution. A
Bronsted base is a substance which accepts a proton.
(a) Assertion and reason are true. Reason is the correct explanation of Assertion.
(b) Assertion and Reason are true. Reason is not the correct explanation of Assertion.
(c) Assertion is true. Reason is false.
(d) Assertion is false. Reason is true.

Ans: (a)
Q. 32 Which of the following statement is CORRECT?
(a) Reduction is a substance which increases the oxidation number of other substance.
(b) Oxidising agent undergoes a decrease in its own oxidation number.
(c) Reduction means loss of electrons.
(d) Reducing agent is a substance that accepts electrons.

Ans: (b)
Q. 33 Heavy water is $\qquad$ .
(a) known as hard water
(b) water of mineral springs
(c) water obtained by repeated distillation and condensation of odinary water
(d) odinary water containing dissolved salts and heavy metals.

Ans: (c)
Q. 34 Choose the CORRECT order of metallic character from the options given below.
(a) $\mathrm{K}<\mathrm{Ca}>\mathrm{Ba}$
(b) $\mathrm{K}>\mathrm{Ca}>\mathrm{Ba}$
(c) $\mathrm{K}<\mathrm{Ca}<\mathrm{Ba}$
(d) $\mathrm{K}>\mathrm{Ca}<\mathrm{Ba}$

Ans: (d)
Sol: Alkali metals are more metallic than alkaline earth metals due to mobile $\mathrm{ns}^{1}$ electrons. Among alkaline earth metals, the metallic character increases down the group with increasing size.
Q. 35 In diborane, $\qquad$
(a) 2 bridged hydrogen atoms are present
(b) 3 bridged hydrogen atoms are present
(c) 4 bridged hydrogen atoms are present
(d) 5 bridged hydrogen atoms are present

Ans: (a)
Structure of diborane
Q. 36 The following structural unit is present in $\qquad$

(a) borane
(b) borax
(c) boric acid
(d) silicates

Ans: (b)
Sol: The structural unit is $\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right]^{2-}$ which is present in borax, $\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$.
Q. 37 IUPAC name of the compound is $\qquad$

(a) 2-Formyl-5-methoxynitrobenzene
(b) 4-Formyl-3-nitroanisole
(c) 4-Methoxy-2-nitrobenzaldehyde
(d) 4-Formyl-5-nitroanisole

Ans: (c)
Sol:


Principal functional group is - CHO
$\therefore$ IUPAC name is 4-Methoxy-2-nitrobenzaldehyde.
Q. 38 The CORRECT IUPAC name of the following alkane is $\qquad$ -.

(a) 3,6-Diethyl-2-methyloctane
(b) 6-Isopropl-3-ethyloctane
(c) 2-Methyl-3-ethyloctane
(d) 3-Isopropyl-6-ethyloctane

Ans: (d)

Sol:


Q. 39 Predict the IUPAC name of the alkene which would give $\vee^{\mathrm{CHO}}$ and $\mathrm{Y}^{\mathrm{CHO}}$ on reductive ozonolysis?
(a) 2-Methylhex-3-ene
(b) 4-Methylpent-2-ene
(c) 2-Methylpent-3-ene
(d) 5-Methylhex-3-ene

Ans: (a)

Sol:

Q. 40 The number of types of bonds between two carbon atoms in calcium carbide is
(a) two sigma, one pi
(b) position isomer
(c) functional isomer
(d)optical isomer

Ans: (c)
Sol: Calcium carbide $\left[\mathrm{CaCl}_{2}\right]$ is $\mathrm{Ca}^{2+}[\mathrm{C} \equiv \mathrm{C}]^{2-}$
Q. 41 Identify the INCORRECT match:

| Term |  | Unit |
| :--- | :--- | :---: |
| (A)Conductance $\rightarrow$ $\Omega^{-1}$ <br> Molar   | $\rightarrow \Omega^{-1} m^{2} \mathrm{~mol}^{-1} m$ |  |
| (B)conductivity |  |  |
| (C) $\quad$ Resitivity | $\rightarrow$ | $\Omega m^{-1}$ |
| (D) Conductivity | $\rightarrow$ | $\Omega^{-1} m^{-1}$ |

Ans: (c)
Sol: The unit of resitivity is $\Omega^{-1} \mathrm{~m}^{-1}$ or $\mathrm{Sm}^{-1}$
Q. 42 When initial concentration of a reactant of a reactant is doubled in a reaction, its half-time period is not affected. The order of the reaction is $\qquad$ —.
(a) zero
(b) first
(c) second
(d) more than zero but less than first

Ans: (b)
Sol: The half-life of first order reaction is given by equation $\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}$
The equation implies that the half-life of a first order reaction is constant and is independent of the reactant concentration. Since, in given reaction, chnage in concentration does not affect its half-life; it must be a first order reaction.
Q. 43 Which of the following adsorption willNOT show the below mentioned general characteristics?
(i) High enthalpy of adsorption.
(ii) High activation energy.
(iii)Formation of unilayer of adsorbate on adsorbent surface.
(a) Adsorption of acetic acid in solution by charcoal.
(b) Adsorption of oxygen on Pt .
(c) Adsorption of CO on W .
(d) Adsorption of $\mathrm{H}_{2}$ on Ni.

Ans: (a)
Sol: The given general characteristics are of chemisorption. Among the options, only option (A) is an example of physisorption. Hence, option (A) will not show the given characteristics.
Q. 44 Strong reducing behaviour of $\mathrm{H}_{3} \mathrm{PO}_{2}$ is due to $\qquad$ _.
(a) low/high oxidation state of phosphorous
(b) presence of two -OH groups and one $\mathrm{P}-\mathrm{H}$ bond
(c) presence of one - OH group and two $\mathrm{P}-\mathrm{H}$ bonds
(d) high electron gain enthalpy of phosphorous

Ans: (c)

Sol:


Hypophosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{2}\right)$
$\mathrm{H}_{3} \mathrm{PO}_{2}$ is a monobasic acid since it contains one P-OH bond. It shows strong reducing behaviour due to the presence of two P-H bonds.
Q. 45 Identify the INCORRECT statement regarding 3d transition series.
(a)The strength of metallic bonds increases from Sc to Cr and then it decreases.
(b) The second ionization enthalpy of $\mathbf{C r}$ is high because of stable $d^{5}$ configuration.
(c) The number of oxidation states increases from Sc to Mn and then decreases from Fe to Zn .
(d) The first ionization enthalpy decreases from Sc to Zn as the atomic number increases.

Ans: (d)
Sol: The first ionization enthalpy increases with some irregularities as the atomic number increases in the 3 d transtition series. The irregularities are due to the screening effect of added (n-1) d-electrons.
Q. 46 Praveen went to a hill station where he experienced some breathing problems due to low density of oxygen. If at NTP density of oxygen is $1.520 \mathrm{~g} \mathrm{~L}^{-1}$, what is the difference in densities, if the temperature at the hill station is $3^{0} \mathrm{C}$ and pressure is 705 mm . The hill is at a height of 2173 m .

Sol: $\quad d=\frac{P M}{R T}$ OR $\frac{d_{1}}{d_{2}}=\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}} \times \frac{\mathrm{T}_{2}}{\mathrm{P}_{2}}$
$\mathrm{P}_{1}=760 \mathrm{~mm}, \mathrm{~T}_{1}=298 \mathrm{~K}, \mathrm{P}_{2}=705 \mathrm{~mm}$
$\mathrm{T}_{2}=276 \mathrm{~K}$
$\mathrm{d}_{1}=1.52 \mathrm{~g} \mathrm{~L}^{-1}, \mathrm{~d}_{2}=? \mathrm{~d}_{2}-\mathrm{d}_{1}=$ ?
$\frac{1.52}{d_{2}}=\frac{760}{298} \times \frac{276}{705}$
$\mathrm{d}_{2}=\frac{319336.8}{209760}=1.522$
$\mathrm{d}_{2}-\mathrm{d}_{1}=1.522-1.52$
$\mathrm{d}_{2}-\mathrm{d}_{1}=0.002$
Q. 47 A metal crystallizes into two cubic phases, face centred cubic (FCC) and body centred cubic (BCC) whose unit cell lengths are 3.5 and $3.0 \AA$, respectively. Calculate the ratio of the densities of FCC and BCC.
Sol: FCC has 4 atoms in a unit cell.
BCC has 2 atoms in a unit cell.

$$
\begin{aligned}
d & =\frac{\mathrm{n} \times \mathrm{M}}{\mathrm{~N}_{0} \times \mathrm{a}^{3}} \\
\frac{d_{\mathrm{FCC}}}{d_{\mathrm{BCC}}} & =\frac{4}{2} \frac{(3.0)^{3}}{(3.5)^{3}}=1.26
\end{aligned}
$$

Q. 48 A mixture contains $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ in the ratio of 2:1 by volume. The vapour density of the mixture is $\qquad$ ?
Sol: Let the volume of mixture $=100 \mathrm{~mL}$
Volume of $\mathrm{N}_{2} \mathrm{O}_{4}=\frac{2}{3} \times 100=\frac{200}{3}$
Volume of $\mathrm{NO}_{2}=\frac{100}{3}$
Vapour density of $\mathrm{N}_{2} \mathrm{O}_{4}=\frac{\text { Mol.wt. }}{2}=\frac{92}{2}=46$
Vapour density of $\mathrm{NO}_{2}=\frac{46}{2}=23$
Vapour of density of mixture $=\mathrm{d}$
hence,
mass of mixture $=$ mass of $\mathrm{NO}_{2}+$ Mass of $\mathrm{N}_{2} \mathrm{O}_{4}$

$$
100 \times \mathrm{d}=\frac{100}{3} \times 23+\frac{200}{3} \times 46
$$

Vapour density $(d)=\frac{115}{3}=38.33$
Q. 49 The $\mathrm{pH} 0.10 \mathrm{M} \mathrm{NH}_{3}$ solution is [GivenK ${ }_{\mathrm{b}}=1.8 \times 10^{-5} ; \log 1.35=0.13$ ]

Sol: $\quad \mathrm{H}_{2} \mathrm{OH}^{+} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
or $\mathrm{pH}+\mathrm{pOH}=14$
Find the value of $\mathrm{OH}^{-}$and calculate the values of pH and pOH .
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \stackrel{+}{\mathrm{N}} \mathrm{H}_{4}+\mathrm{OH}^{-}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{b}} & =\frac{\left.\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{\mathrm{x}^{2}}{0.10} \\
\mathrm{x}^{2} & =1.8 \times 10^{-6} \mathrm{x}=1.35 \times 10^{-3}=\left[\mathrm{OH}^{-}\right] \\
\mathrm{pOH} & =2.87 \mathrm{pH}=11.13
\end{aligned}
$$

Q. 50 In an aqueous solution $\mathrm{AgNO}_{3}$ and $\mathrm{CuSO}_{4}$ are connected in series. If Ag deposited at cathode is 1.08 g , Then Cu deposited is $\qquad$ ?
Sol: Eq. Of Ag = Eq. Of Cu

$$
\begin{aligned}
& \frac{1.08}{108}=\frac{\mathrm{W}_{\mathrm{Cu}}}{63.5 / 2} \text { or } \\
& \mathrm{W}_{\mathrm{Cu}}=\frac{63.5 \times 1.08}{2 \times 108}=0.3175 \mathrm{~g}
\end{aligned}
$$

## Part - C - MATHEMATICS

Q. 51 If $\mathbf{P}(\mathbf{x})=a x^{2}+b x+c, \mathbf{Q}(\mathbf{x})=-a x^{2}+d x+c$ where $a c \neq 0$, then the equation $\mathbf{P}(\mathbf{x}) \mathbf{Q}(\mathbf{x})=\mathbf{0}$ has
(a) all four real roots.
(b) atleast two real roots.
(c) exactly two real roots.
(d) all four non-real roots.

Ans: (b)
Sol: as, $a x^{2}+b x+c=0$
and $-a x^{2}+d x+c=0$
as, $\quad a c+0$
i.e
$a c>0$ or $a c<0$
If $a c<0$, then,
$b^{2} 4 a c$
$b^{2}$ is always +ve
D>0-so, two real roots and taking about,
for, $-a x^{2}+d x+c=0$
$\mathrm{D}=b^{2}-4 a c$

$$
=d^{2}-4(-a) c
$$

$$
=d^{2}+4 a c
$$

If $a c<0$,
$\mathrm{D}<0 \rightarrow$ may be
ac $>0$, for $\mathrm{ax}^{2} b x+c \rightarrow \mathrm{D}<0$
for $-a x^{2}+d x+c \rightarrow D>0$

So, at least two real roots.
Q. 52 If $\tan ^{2} \theta-(1+\sqrt{3}) \tan \theta+\sqrt{3}=0$, then the general value of $\theta$ is
(a) $n \pi+\frac{\pi}{4}, n \pi+\frac{\pi}{3}$
(b) $n \pi-\frac{\pi}{4}, n \pi+\frac{\pi}{3}$
(c) $n \pi+\frac{\pi}{4}, n \pi-\frac{\pi}{3}$
(d) $n \pi-\frac{\pi}{4}, n \pi-\frac{\pi}{3}$

Ans: (a)
Sol: We have $\tan ^{2} \theta-(1+\sqrt{3}) \tan \theta+\sqrt{3}=0$

$$
\begin{aligned}
& \Leftrightarrow(\tan \theta-\sqrt{3})(\tan \theta-1)=0 \\
& \Rightarrow \tan \theta=\sqrt{3} \text { or } \tan \theta=1 \\
& \Rightarrow \theta=\mathrm{n} \pi+\frac{\pi}{3}, \mathrm{n} \pi+\frac{\pi}{4}
\end{aligned}
$$

Q. 53 PQRS is a square inscribed in a right triangle ACB. Let $h$ be the distance of the vertex $C$ from $A B$. If $\frac{1}{h}+\frac{1}{c}=\frac{2}{3}$, then the length of side of the square is when $A B$ is equal to C

(a) $\frac{2}{3}$
(b) 3
(c) $\frac{3}{2}$
(d) 2

Ans: (c)

Sol:


Drop perpendicular from the vertex $C$ to $A B$, that meets $S R$ and $P Q$ at $M$ and $N$, respectively,
Let $\mid$ SR $\mid=x=$ side length of the square
$\frac{|\mathrm{SR}|}{|\mathrm{AB}|}=\frac{|\mathrm{CM}|}{|\mathrm{CN}|}$
$\Leftrightarrow \frac{\mathrm{x}}{\mathrm{c}}=\frac{\mathrm{h}-\mathrm{x}}{\mathrm{h}} \Leftrightarrow 1-\frac{\mathrm{x}}{\mathrm{h}}=\frac{\mathrm{x}}{\mathrm{c}}$
$\Leftrightarrow \frac{1}{\mathrm{~h}}+\frac{1}{\mathrm{c}}=\frac{1}{\mathrm{x}} \Rightarrow \mathrm{x}=\frac{3}{2} \quad \ldots\left[\frac{1}{\mathrm{~h}}+\frac{1}{\mathrm{c}}=\frac{2}{3}\right.$ (given) $]$
Q. 54 If complex numbers $z_{1}, z_{2}$, and $z_{3}$ represent the vertices $A, B$ and $C$ respectively of an isosceles triangle ABC of which $\angle \mathrm{C}$ is right angle, then correct statement is
(a) $z_{1}^{2}+z_{2}^{2}+z_{3}^{3}=z_{1} z_{2} z_{3}$
(b) $\left(z_{3}-z_{1}\right)^{2}=z_{3}-z_{2}$
(c) $\left(z_{1}-z_{2}\right)^{2}=\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$
(d) $\left(z_{1}-z_{2}\right)^{2}=2\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$

Ans: (d)
Sol: $\quad|\mathrm{CB}|=|\mathrm{CA}|$ and $\angle \mathrm{C}=\frac{\pi}{2}$


$$
\begin{aligned}
& \Rightarrow\left(\mathrm{z}_{2}-\mathrm{z}_{3}\right)=\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right) \mathrm{e}^{\frac{\mathrm{i} \pi}{2}} \\
& =\mathrm{i}\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right) \\
& \Rightarrow\left(\mathrm{z}_{2}-\mathrm{z}_{3}\right)^{2}=-\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right)^{2} \\
& \Rightarrow \mathrm{z}_{2}^{2}+\mathrm{z}_{3}^{2}-2 \mathrm{z}_{2} \mathrm{z}_{3}=-\mathrm{z}_{1}^{2}-\mathrm{z}_{3}^{2}+2 \mathrm{z}_{1} \mathrm{z}_{3} \\
& \Rightarrow \mathrm{z}_{1}^{2}+\mathrm{z}_{2}^{2}-2 \mathrm{z}_{1} \mathrm{z}_{2}=2 \mathrm{z}_{1} \mathrm{z}_{3}+2 \mathrm{z}_{2} \mathrm{z}_{3}-2 \mathrm{z}_{3}^{2}-2 \mathrm{z}_{1} \mathrm{z}_{2} \\
& \Rightarrow\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}=2\left[\left(\mathrm{z}_{1} \mathrm{z}_{3}-\mathrm{z}_{3}^{2}\right)-\left(\mathrm{z}_{1} \mathrm{z}_{2}-\mathrm{z}_{2} \mathrm{z}_{3}\right)\right] \\
& \Rightarrow\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}=2\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right)\left(\mathrm{z}_{3}-\mathrm{z}_{2}\right)
\end{aligned}
$$

Q. 55 If $m$ is A.M. of two distinct real number 1 and $n(l, n>1)$ and $G_{1}, G_{2}$ and $G_{3}$ are three geometric meated between $l$ and $n$, then $G_{1}^{4}+2 G_{2}^{4}+G_{3}^{4}$ equals
(a) $41^{2} \mathrm{mn}$
(b) $4 \operatorname{lm}^{2} n$
(c) $4 \mathrm{lmn}^{2}$
(d) $41^{2} m^{2} n^{2}$

Ans: (b)
Sol: Since, $\mathrm{G}_{1}, \mathrm{G}_{2}$ and $\mathrm{G}_{3}$ are three geometric means between l and n .

$$
\begin{array}{ll}
\therefore & \mathrm{G}_{1}=\mathrm{l}\left(\frac{\mathrm{n}}{\mathrm{l}}\right)^{\frac{1}{4}}, \mathrm{G}_{2}=\mathrm{l}\left(\frac{\mathrm{n}}{\mathrm{l}}\right)^{\frac{2}{4}}, \mathrm{G}_{3}=\mathrm{l}\left(\frac{\mathrm{n}}{\mathrm{l}}\right)^{\frac{3}{4}} \\
\therefore & \mathrm{G}_{1}^{4}+2 \mathrm{G}_{2}^{4}+\mathrm{G}_{3}^{4}=\mathrm{l}^{4}\left(\frac{\mathrm{n}}{\mathrm{l}}\right)+2 \mathrm{l}^{4}\left(\frac{\mathrm{n}}{\mathrm{l}}\right)^{2}+\mathrm{l}^{4}\left(\frac{\mathrm{n}}{\mathrm{l}}\right)^{3}
\end{array}
$$

$$
\begin{aligned}
& =\mathrm{nl}^{3}+2 \mathrm{n}^{2} \mathrm{l}^{2}+\mathrm{n}^{3} \mathrm{l} \\
& =2 \mathrm{n}^{2} \mathrm{l}^{2}+\mathrm{nl}\left(\mathrm{l}^{2}+\mathrm{n}^{2}\right) \\
& =\mathrm{nl}(\mathrm{l}+\mathrm{n})^{2} \\
& =\mathrm{nl}(2 \mathrm{~m})^{2} \quad \ldots\left[\because \mathrm{~m}=\frac{\mathrm{l}+\mathrm{n}}{2} \Rightarrow 2 \mathrm{~m}=\mathrm{l}+\mathrm{n}\right] \\
& =4 \operatorname{lm}^{2} \mathrm{n}
\end{aligned}
$$

Q. 56 If $a>2 b>0$, then the positive value of $m$ for which $y=m x-b \sqrt{1+m^{2}}$ is a common tangent to $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$ is
(a) $\frac{2 b}{\sqrt{a^{2}-4 b^{2}}}$
(b) $\frac{\sqrt{a^{2}-4 b^{2}}}{2 b}$
(c) $\frac{2 b}{a-2 b}$
(d) $\frac{b}{a-2 b}$

Ans: (a)
Sol: Any tangent to $x^{2}+y \mid=b^{2}$ is
$y=m x-b \sqrt{1+m^{2}}$
$(\mathrm{x}-\mathrm{a})^{2}+\mathrm{y}^{2}=\mathrm{b}^{2}$
$\left|\frac{\mathrm{ma}-\mathrm{b} \sqrt{1+\mathrm{m}^{2}}}{\sqrt{\mathrm{~m}^{2}+1}}\right|=\mathrm{b} \Rightarrow \mathrm{ma}=2 \mathrm{~b} \sqrt{1+\mathrm{m}^{2}}$
$\Rightarrow \mathrm{m}^{2} \mathrm{a}^{2}=4 \mathrm{~b}^{2}+4 \mathrm{~b}^{2} \mathrm{~m}^{2}$
$\therefore \mathrm{m}= \pm \frac{2 \mathrm{~b}}{\sqrt{\mathrm{a}^{2}-4 \mathrm{~b}^{2}}}$
Q. 57 Tangents are drawn through a point $P$ to the ellipse $4 x^{2}+5 y^{2}=20$ having inclinations $\alpha$ and $\beta$ such that $\tan (\alpha+\beta)=k$, the locus of $P$ is
(a) $k\left(x^{2}-y^{2}-1\right)=2 x y$
(b) $k\left(x^{2}+y^{2}-1\right)=x y$
(c) $k\left(x^{2}+y^{2}\right)=2 x y$
(d) none of these

Ans: (A)
Sol: We have $\frac{x^{2}}{5}+\frac{y^{2}}{4}=1$
$\therefore$ The equation of a tangent in slope form is
$\mathrm{y}=\mathrm{mx} \pm \sqrt{5 \mathrm{~m}^{2}+4}$
It passes through $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\Rightarrow \mathrm{y}_{1}=\mathrm{mx}_{1} \pm \sqrt{5 \mathrm{~m}^{2}+4}$
Squaring both sides,
$\mathrm{y}_{1}^{2}-2 \mathrm{mx}_{1} \mathrm{y}_{1}+\mathrm{m}^{2} \mathrm{x}_{1}^{2}=5 \mathrm{~m}^{2}+4$
Now, $\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{2 \mathrm{x}_{1} \mathrm{y}_{1}}{\mathrm{x}_{1}^{2}-5}$
and $\mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{y}_{1}^{2}-4}{\mathrm{x}_{1}^{2}-5}$

Now, $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=\mathrm{k}$
$\Rightarrow \frac{\mathrm{m}_{1}+\mathrm{m}_{2}}{1-\mathrm{m}_{1} \mathrm{~m}_{2}}=\mathrm{k}$
$\Leftrightarrow \mathrm{m}_{1}+\mathrm{m}_{2}=\mathrm{k}\left(1-\mathrm{m}_{1} \mathrm{~m}_{2}\right)$
$\Leftrightarrow \frac{2 \mathrm{x}_{1} \mathrm{y}_{1}}{\mathrm{x}_{1}^{2}-5}=\mathrm{k}\left(1-\frac{\mathrm{y}_{1}^{2}-4}{\mathrm{x}_{1}^{2}-5}\right) \quad \ldots[$ From (i) and (ii)]
$\Leftrightarrow 2 \mathrm{x}_{1} \mathrm{y}_{1}=\mathrm{k}\left(\mathrm{x}_{1}^{2}-\mathrm{y}_{1}^{2}-1\right)$
$\Rightarrow$ the locus of $\mathrm{P}\left(\mathrm{x}^{1}, \mathrm{y}^{1}\right)$ is $\mathrm{k}\left(\mathrm{x}^{2}-\mathrm{y}^{2}-1\right)=2 \mathrm{xy}$
Q. 58 Let $S$ be the sum of the digits of the coefficient of $x^{6}$ in the expansion of $\left(1+2 x-3 x^{2}\right)^{4}$.

Then which of the following statements is not correct?
(a) $S$ is the square of an integer
(b) $S$ is divisible by 3
(c)G.C.D of $S$ and 6 is 6.
(d)S is divisible by 9

Ans: (c)
Sol: The general term of the expansion is
$\frac{4!}{\mathrm{p}!\mathrm{q}!\mathrm{r}!} \cdot \mathrm{l}^{\mathrm{p}}(2 \mathrm{x})^{\mathrm{q}}\left(-3 \mathrm{x}^{2}\right)^{\mathrm{r}}$, where $\mathrm{p}+\mathrm{q}+\mathrm{r}=4$
$=\frac{4!}{p!q!r!}(2)^{q}(-3)^{r} x^{q+2 r}$
We require $p$, $q, r$ such that
$p+q+r=4$ and $q+2 r=6$
$\Rightarrow \mathrm{p}=1, \mathrm{q}=0$ and $\mathrm{r}=3$
or $p=0, q=2$ and $r=2$
$\Rightarrow$ The coefficient of $\mathrm{x}^{6}$
$=\frac{4!}{1!0!3!} 2^{0}(-3)^{3}+\frac{4!}{0!2!2!}(2)^{2}(-3)^{2}$
$=-108+216=108$
$\Rightarrow S=9$
$S$ is perfect square of an integer (true)
S is divisible by 3 and 9 (true)
S and 6 have G.C.D. $=3$
Q. 59 A purse contains two 50 paise coins, four 25 paise coins and six 10 paise coins, 5 coins are taken out from the purse (at random). The probability that the sum taken out is atleast Rs. 1.50 is
(a) $\frac{40}{{ }^{12} C_{5}}$
(b) $\frac{42}{{ }^{12} C_{5}}$
(c) $\frac{41}{{ }^{12} C_{5}}$
(d) 42

Ans: (b)

Sol:

$$
\begin{gathered}
2-50 \mathrm{P} \\
4-25 \mathrm{P} \\
6-10 \mathrm{P} \\
\hline \text { Total coins }-12
\end{gathered}
$$

Selection of 5 coin out og 12 coin is given by $12 \mathrm{c}_{5}$
Sum taken out a attent Rs150
Probability $=2_{c 2} \times 4_{c 3}+$
Probability $=\frac{2 c_{2}+4 c_{3}+2 c_{+} \times 4 c_{4}+2 c_{\times} \times 4 c_{2} \times 6 c_{3}}{12 c_{5}}$

$$
=\frac{92}{12 c_{5}}
$$

Q. 60 For a moderately skewed distribution, quatile deviation and the standard deviation are related by
(a) S.D $=\frac{2}{3}$ Q.D.
(b) S.D. $=\frac{3}{2}$ Q.D.
(c) S.D. $=\frac{3}{4}$ Q.D.
(d) S.D. $=\frac{4}{3}$ Q.D.

Ans: (b)
Q. 61 One hundred identical coins, each with probability $p$ of showing up heads are tossed once. If $0<p<1$ and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of $p$ is
(a) $\frac{1}{10}$
(b) $\frac{49}{101}$
(c) $\frac{50}{101}$
(d) $\frac{51}{101}$

Ans: (d)
Sol: We have ${ }^{100} \mathrm{C}_{50} \mathrm{p}^{50}(1-\mathrm{p})^{50}$
$={ }^{100} \mathrm{C}_{51} \mathrm{p}^{51}(1-\mathrm{p})^{49}$
$\Rightarrow \frac{1-\mathrm{p}}{\mathrm{p}}=\frac{100!}{51!49!} \times \frac{50!.50!}{100!}=\frac{50}{51}$
$\Rightarrow 51-51 \mathrm{p}=50 \mathrm{p} \Rightarrow \mathrm{p}=\frac{51}{101}$
Q. 62 Let a covergent sequence $<b_{n}>$ of real numbers satisfy the recurrence relation: $b_{n+1}=\frac{1}{3}\left(2 b_{n}+\frac{125}{b_{n}^{2}}\right), b_{n} \neq 0$,then $\lim _{n \rightarrow \infty} b_{n}=$
(a) is 0
(b) does not exist
(c) is 5
(d) $\frac{2}{3}$

Ans: (c)
Sol: Let $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{b}_{\mathrm{n}}=\mathrm{b}$.

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty} b_{n+1}=\frac{1}{3}\left(2 \lim _{n \rightarrow \infty} b_{n}+\frac{125}{\lim _{n \rightarrow \infty} b_{n}^{2}}\right) \\
& \Rightarrow b=\frac{1}{3}\left(2 b+\frac{125}{b^{2}}\right) \\
& \Rightarrow b=\frac{125}{b^{2}} \Rightarrow b^{3}=125 \Rightarrow b=5
\end{aligned}
$$

Q. 63 The derivative of $\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}$ is
(a) $\frac{1}{a^{2}-x^{2}}$
(b) $\frac{a}{a^{2}-x^{2}}$
(c) $\frac{a}{\sqrt{a^{2}-x^{2}}}$
(d) $\frac{1}{\sqrt{a^{2}-x^{2}}}$

Ans: (d)
Sol: Let $y=\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}$
Substituting $\theta=\sin ^{-1}\left(\frac{x}{a}\right) \Rightarrow x=a \sin \theta$

$$
\begin{aligned}
& y=\tan ^{-1}\left[\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right]=\tan ^{-1}\left[\frac{a \sin \theta}{a \cos \theta}\right] \\
& \Rightarrow y=\tan ^{-1}(\tan \theta)=\theta=\sin ^{-1} \frac{x}{a}
\end{aligned}
$$

Differentiating with respect to x , we get

$$
\begin{aligned}
\frac{d y}{d x}= & \frac{d}{d x}\left(\sin ^{-1} \frac{x}{a}\right)=\frac{1}{\sqrt{1-\frac{x^{2}}{a^{2}}}} \cdot \frac{1}{a} \\
& =\frac{a}{\sqrt{a^{2}-x^{2}}} \cdot \frac{1}{2 a}=\frac{1}{\sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

Q. 64 The interval of values of a such that every tangent to the curve $y=x^{3}-a x^{2}+x+1$ has acute inclination, is
(a) $(-\sqrt{2}, \sqrt{2})$
(b) $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
(c) $(-\sqrt{3}, \sqrt{3})$
(d) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

Ans: (c)
Sol: $\quad y=x^{3}-a x^{2}+x+1$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-2 a x+1$

For acute inclination, $\frac{d y}{d x}>0$
$\Leftrightarrow 3 \mathrm{x}^{2}-2 \mathrm{ax}+1>0$ for all x
$\Rightarrow 4 \mathrm{a}^{2}-12<0 \Leftrightarrow \mathrm{a}^{2}<3$
$\Leftrightarrow-\sqrt{3}<\mathrm{a}<\sqrt{3}$
Q. $65 \int \frac{\cos ^{-1} x}{x^{3}} d x$ equals
(a) $-\frac{1}{2 x^{2}} \cos ^{-1} x+\frac{1}{2} \cdot \frac{\sqrt{1-x^{2}}}{x}+c$
(b) $-\frac{1}{2 x^{2}} \cos ^{-1} x+\frac{1}{2} \cdot \frac{x^{2}}{\sqrt{1-x^{2}}}+c$
(c) $\frac{1}{2 x^{2}} \cos ^{-1} x-\frac{1}{2} \cdot \frac{\sqrt{1-x^{2}}}{x}+c$
(d) $-\frac{1}{2 x^{2}} \cos ^{-1} x-\frac{1}{2} \cdot \frac{x^{2}}{\sqrt{1-x^{2}}}+c$

Ans: (a)
Sol: Let $I=\int \frac{\cos ^{-1} x}{x^{3}} d x$
Let $\mathrm{t}=\cos ^{-1} \mathrm{x} \Rightarrow \mathrm{x}=\cos \mathrm{t}$

$$
\Rightarrow d x=-\sin t d t
$$

$\mathbf{I}=-\int \mathrm{t}\left(\tan \mathrm{t} \sec ^{2} \mathrm{t}\right) \mathrm{dt}$
$=-\left[\frac{\mathrm{t} \tan ^{2} \mathrm{t}}{2}-\int 1 \cdot \frac{1}{2} \tan ^{2} \mathrm{t} \mathrm{dt}\right]$
$=-\frac{\mathrm{t}}{2} \tan ^{2} \mathrm{t}+\frac{1}{2} \int\left(\sec ^{2} \mathrm{t}-1\right) \mathrm{dt}$
$=-\frac{\mathrm{t}}{2} \tan ^{2} \mathrm{t}+\frac{1}{2}(\tan \mathrm{t}-\mathrm{t})+\mathrm{c}$
$=-\frac{1}{2}\left(\cos ^{-1} \mathrm{x}\right)\left(\frac{1-\mathrm{x}^{2}}{\mathrm{x}^{2}}\right)+\frac{1}{2} \cdot \frac{\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}}-\frac{1}{2} \cos ^{-1} \mathrm{x}+\mathrm{c}$
$=-\frac{1}{2}\left(\cos ^{-1} \mathrm{x}\right)\left(1+\frac{1-\mathrm{x}^{2}}{\mathrm{x}^{2}}\right)+\frac{1}{2} \cdot \frac{\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}}+\mathrm{c}$
$=-\frac{1}{2}\left(\cos ^{-1} x\right)\left(\frac{1}{x^{2}}\right)+\frac{1}{2} \cdot \frac{\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}}+\mathrm{c}$
Q. 66 The value of is $\int_{0}^{n \pi+v}|\sin x| d x$ is
(a) $2 \mathrm{n}+1+\operatorname{cosv}$
(b) $2 \mathrm{n}+1-\operatorname{cosv}$
(c) $2 \mathrm{n}+1$
(d) $2 n+\operatorname{cosv}$

Ans: (b)
Sol: $\quad \int_{0}^{\mathrm{n} \pi+v}|\sin x| d x=\int_{0}^{n \pi}|\sin x| d x+\int_{n \pi}^{n \pi+v}|\sin x| d x$
$=\mathrm{n} \int_{0}^{\pi}|\sin \mathrm{x}| \mathrm{dx}+\int_{0}^{\mathrm{v}}|\sin \mathrm{x}| \mathrm{dx} \quad \ldots[|\sin \mathrm{x}|$ is periodic with period $\pi]$
$=n \int_{0}^{\pi} \sin x d x+\int_{0}^{v} \sin x d x \quad \ldots[0<\sin x$ for $x \in(0, \pi)]$
$=\mathrm{n}[-\cos \mathrm{x}]_{0}^{\pi}+[-\cos \mathrm{x}]_{0}^{\mathrm{v}}$
$=2 \mathrm{n}+1-\cos \mathrm{v}$

## Q. 67 The area of the region

$\{(x, y) \in R: y \geq \sqrt{|x+3|}, 5 y \leq x+9 \leq 15\}$ is equal to
(a) $\frac{1}{6}$
(b) $\frac{4}{3}$
(c) $\frac{3}{2}$
(d) $\frac{5}{3}$

Ans: (c)
Sol: We draw the region
$y^{2} \geq|x+3|$ and $5 y \leq x+9$
Solving $\mathrm{y}^{2}=-\mathrm{x}-3$ and $5 \mathrm{y}=\mathrm{x}+9$, we get
$y^{2}=-(5 y-9)-3 \Leftrightarrow y^{2}+5 y-6=0$
$\Leftrightarrow y=-6$ or 1
( $y=-6$ rejected as $y$ is negative.)
$\mathrm{y}=1 \Rightarrow \mathrm{x}=-4$
$\Rightarrow \mathrm{A}=(-4,1)$
Similarly, solving $\mathrm{y}^{2}=\mathrm{x}+3$ and $5 \mathrm{y}=\mathrm{x}+9$,
we get $\mathrm{D}=(1,2)$


Required area
$=$ area of $\square \mathrm{ABCD}-\int_{-4}^{-3} \sqrt{-\mathrm{x}-3} \mathrm{dx}-\int_{-3}^{1} \sqrt{\mathrm{x}+3} \mathrm{dx}$
$=\frac{1}{2}(1+2) \times 5-\left[\frac{(-\mathrm{x}-3)^{\frac{3}{2}}}{-3 / 2}\right]_{-4}^{-3}-\left[\frac{(\mathrm{x}+3)^{\frac{3}{2}}}{3 / 2}\right]_{-3}^{1}$
$=\frac{15}{2}-\frac{2}{3}-\frac{16}{3}$
$=\frac{3}{2}$ sq. units

## Q. 68 The minimum are of the triangle whose vertices are

 $-\hat{i}+\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $t \hat{i}+\hat{j}+\hat{k}$, where $t$ is a real number, is(a) $\frac{1}{2}$ sq .unit
(b) $\frac{\sqrt{5}}{2}$ sq. unit
(c)1 sq.unit
(d) $\frac{\sqrt{3}}{2}$ sq. unit

Ans: (d)
Sol: Let $-\hat{i}+\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}, t \hat{i}+\hat{j}+\hat{k}$ be the position vectors of $A, B$ and $C$ respectively.

$\overrightarrow{\mathrm{AB}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})-(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{AB}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
and $\overrightarrow{\mathrm{AC}}=(t \hat{i}+\hat{j}+\hat{k})-(-\hat{i}+\hat{j}+2 \hat{k})$
$\Rightarrow \overrightarrow{\mathrm{AC}}=(t+i) \hat{i}-\hat{k}$
Area of triangle $\mathrm{ABC}=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{llr}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
2 & 1 & 1 \\
(\mathrm{t}+1) & 0 & -1
\end{array}\right| \\
& \Rightarrow \text { Area }=\frac{1}{2}|[\hat{\mathrm{i}}(-1-0)+\hat{\mathrm{j}}(\mathrm{t}+1+2)+\hat{\mathrm{k}}(0-\mathrm{t}-1)]| \\
& \quad=\frac{1}{2}|-\hat{\mathrm{i}}+(\mathrm{t}+3) \hat{\mathrm{j}}-(\mathrm{t}+1) \hat{\mathrm{k}}|
\end{aligned}
$$

$$
=\frac{1}{2} \sqrt{1+(\mathrm{t}+3)^{2}+(\mathrm{t}+1)^{2}}
$$

$\Rightarrow$ Area of triangle $\mathrm{ABC}=\frac{1}{2} \sqrt{2 \mathrm{t}^{2}+8 \mathrm{t}+11}$
Minimizing Area $\Leftrightarrow$ minimizing A,
where $\mathrm{A}=2 \mathrm{t}^{2}+8 \mathrm{t}+11$
$\Rightarrow \frac{\mathrm{dA}}{\mathrm{dt}}=4 \mathrm{t}+8=4(\mathrm{t}+2)$

$$
\frac{\mathrm{dA}}{\mathrm{dt}}=0
$$

$\Rightarrow 4 \mathrm{t}+8=0$
$\Rightarrow \mathrm{t}=-2$ ...(a point of relative minima.)
(or We use second derivative test.
$\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dt}^{2}}=4>0$ for $\mathrm{t}=-2$ )
$\Rightarrow$ Area is inimum at $\mathrm{t}=-2$.
$\Rightarrow$ Area of triangle $\mathrm{ABC}=\frac{1}{2} \sqrt{2(-2)^{2}+8(-2)+11}$

$$
=\frac{\sqrt{3}}{2}
$$

## Q. 69 Consider the truth table of $\mathrm{p} \oplus \mathrm{q}$ given as

| p | q | $\mathrm{p} \oplus \mathrm{q}$ |
| :---: | :---: | :---: |
| T | T | F |
| T | F | T |
| F | T | T |
| F | F | F |

Then which of the following has same truth value as $p \oplus q$ ?
(a) $(\boldsymbol{p} \leftrightarrow \boldsymbol{q})$
(b) $\sim(\boldsymbol{p} \leftrightarrow \boldsymbol{q})$
(c) $(\boldsymbol{p} \rightarrow \boldsymbol{q})$
(d) $\sim(\boldsymbol{p} \rightarrow \boldsymbol{q})$

Ans: (b)
Sol:

| p | q | $\mathrm{p} \oplus \mathrm{q}$ | $(\mathrm{p} \leftrightarrow \mathrm{q})$ | $\sim(\mathrm{p} \leftrightarrow \mathrm{q})$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | F | T | F |
| T | F | T | F | T |
| F | T | T | F | T |
| F | F | F | T | F |

$\mathrm{p} \oplus \mathrm{q} \equiv \sim(\mathrm{p} \leftrightarrow q)$
Q. 70 The length of the perpendicular drawn from the point $(3,-1,11)$ to the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ is
(a) $\sqrt{33}$
(b) $\sqrt{53}$
(c) $\sqrt{66}$
(d) $\sqrt{29}$

Ans: (b)
Sol: Required distance
$=\left\{(3-0)^{2}+(-1-2)^{2}+(11-3)^{2}-\left[\frac{2(3-0)+2(-1-2)+4(11-3)}{\sqrt{4+9+16}}\right]^{2}\right\}$
$=\sqrt{82-\left(\frac{29}{\sqrt{29}}\right)^{2}}=\sqrt{82-29}=\sqrt{53}$
Aliter : Let $\mathrm{P}=(3,-1,11)$
Let the point $Q$ on the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda$
be $(2 \lambda, 3 \lambda+2,4 \lambda+3)$ such that
$\mathrm{PQ} \perp$ given line.
$\Rightarrow 2(2 \lambda-3)+3(3 \lambda+3)+4(4 \lambda-8)=0$
$\Rightarrow \lambda=1 \Rightarrow \mathrm{Q}=(2,5,7)$
$\Rightarrow|\mathrm{PQ}|=\sqrt{1+36+16}=\sqrt{53}$
Q. $71 P(x)$ is a polynomial with integer coeficients and has the lowest possible degree. If one of the zeroes of $\mathbf{P}(\mathbf{x})$ is $\sqrt[3]{11}+\sqrt[3]{121}$, then the product of all zeroes is $\qquad$ ?

Sol: $\quad$ Let $a=\sqrt[3]{11}+\sqrt[3]{121}$
$\Rightarrow \mathrm{a}+(-\sqrt[3]{11})+(\sqrt[3]{121})=0$
$\Rightarrow \mathrm{a}^{3}+(-\sqrt[3]{11})^{3}+(-\sqrt[3]{121})^{3}=3 \mathrm{a}(-\sqrt[3]{11})(-\sqrt[3]{121})$
$\ldots\left[\because a+b+c=0 \Rightarrow a^{3}+b^{3}+c^{3}=3 a b c\right]$
$\Leftrightarrow \mathrm{a}^{3}-11-121=3 \mathrm{a}(11)$
$\Leftrightarrow a^{3}-33 a-132=0$
$\Rightarrow$ 'a'satisfies the cubic equation
$\mathrm{x}^{3}-33 \mathrm{x}-132=0$
If the other two roots are $b$ and $c$, then
$x^{3}-33 x-132=(x-a)(x-b)(x-c)$
$\Rightarrow \mathrm{abc}=132$
Q. 72 In a town of $\mathbf{1 0 , 0 0 0}$ familie, it was found taht $40 \%$ family buy newspaper $\mathrm{A}, \mathbf{2 0 \%}$ buy newspaper Band $10 \%$ families buy newspaper C, $5 \%$ families buy A and B, $3 \%$ buy B and C and $4 \%$ buy A and C. If $2 \%$ families buy all the three newspapers, then number of families which buy $A$ only is $\qquad$ ?

Sol: $\quad n(A)=40 \%$ of $10,000=4,000$
$n(B)=20 \%$ of $10,000=2,000$
$n(C)=10 \%$ of $10,000=1,000$
$n(A \cap B)=5 \%$ of $10,000=500$
$\mathrm{n}(\mathrm{B} \cap \mathrm{C})=3 \%$ of $10,000=300$
$\mathrm{n}(\mathrm{C} \cap \mathrm{A})=4 \%$ of $10,000=400$
$\mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=2 \%$ of $10,000=200$
$\therefore \mathrm{n}$ (A only)

$$
\begin{aligned}
& =\mathrm{n}(\mathrm{~A})-\mathrm{n}(\mathrm{~A} \cap \mathrm{~B})-\mathrm{n}(\mathrm{~A} \cap \mathrm{C})+\mathrm{n}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C}) \\
& =4000-500-400+200 \\
& =3300
\end{aligned}
$$

Q. 73 If ${ }^{28} C_{2 r}:{ }^{24} C_{2 r-4}=225: 11$, then the value of $r$ is $\qquad$ ?

Sol: $\quad{ }^{28} \mathrm{C}_{2 \mathrm{r}}:{ }^{24} \mathrm{C}_{2 \mathrm{r}-4}=225: 11$

$$
\begin{aligned}
& \Leftrightarrow \frac{28!}{(2 r)!(28-2 r)}: \frac{24!}{(2 r-4)(24-2 r+4)!}=\frac{225}{11} \\
& \Leftrightarrow \frac{28!}{(2 r)!} \times \frac{(2 r-4)!}{24!}=\frac{225}{11} \\
& \Leftrightarrow \frac{28 \times 27 \times 26 \times 25}{2 r(2 r-1)(2 r-2)(2 r-3)}=\frac{225}{11} \\
& \Leftrightarrow 2 r(2 r-1)(2 r-2)(2 r-3)=\frac{11}{225} \times 28 \times 27 \times 26 \times 25 \\
& \Leftrightarrow 2 r(2 r-1)(2 r-2)(2 r-3) \\
& \quad=11 \times 28 \times 3 \times 26 \\
& \quad=11 \times 14 \times 2 \times 3 \times 13 \times 2 \\
& \quad=14 \times 13 \times 12 \times 11
\end{aligned}
$$

By comparing we get $2 \mathrm{r}=14$

$$
\Leftrightarrow r=7
$$

Q. 74 The greatest value of $f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}$ on $[0,1]$ is $\qquad$
Sol: $\quad f(x)=(x+1)^{\frac{1}{3}}-(x-1)^{\frac{1}{2}}$
$f(x)=\frac{1}{3}(x+1)^{\frac{-2}{3}}-\frac{1}{3}(x-1)^{\frac{-2}{3}}$
now, $f^{\prime}(x)=0$

$$
\begin{aligned}
& \Rightarrow \frac{1}{3}(x+1)^{\frac{-2}{3}}-\frac{1}{3}(x-1) \frac{-2}{3}=0 \\
& \Rightarrow \quad(x+1)^{\frac{-2}{3}}=(x-1)^{\frac{-2}{3}} \\
& \quad(x+1)^{\frac{2}{3}}=(x-1)^{\frac{2}{3}}
\end{aligned}
$$

Clearly, $f^{\prime}(x) \pm 0$, for any other value of x. except. In interval i.e
$\mathrm{x} \in[0,1]$
we have to check at
$x=0$ and $x=1$
$f^{\prime}(x)=\frac{1}{3}\left[\frac{1}{(x+1)^{2 / 3}}-\frac{1}{(x-1)^{2 / 3}}\right]$
$=\frac{1}{3}\left[\frac{(x-1)^{2 / 3}-(x+1)^{2 / 3}}{(x-1)^{2 / 3}}\right]$
$f^{\prime}(x)$ doesnot exist $x=1$, thus, only $x=" 0 "$ is the value of which, we have to check

$$
\left.\begin{array}{l}
f(0)=(x+1)^{\frac{1}{3}}-(0-1)^{\frac{1}{3}} \\
\quad=1+1=2
\end{array} f^{\prime \prime}(x)_{x=0}<0\right) \text { so, it is gretest. }
$$

Q. 75 A GP consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, then the common ratio will be equal to ?
Sol: Let the even number of terms in GP be 2 n , with first term a and common ratio r. Then, Sum of all terms $=5$ (sum of odd terms)

$$
\begin{aligned}
& \Rightarrow \mathrm{a}_{1}+\mathrm{a}_{2}+\ldots .+\mathrm{a}_{2 \mathrm{n}}=5\left(\mathrm{a}_{1}+\mathrm{a}_{3}+\ldots .+\mathrm{a}_{2 \mathrm{n}-1}\right) \\
& \Rightarrow \mathrm{a}_{1}+\mathrm{ar}+\mathrm{ar}^{2} \ldots+\mathrm{ar}^{2 \mathrm{n}-1}=5\left(\mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}+\ldots+\mathrm{ar}^{2 \mathrm{n}-2}\right) \\
& \Rightarrow \frac{\mathrm{a}\left(\mathrm{r}^{2 \mathrm{n}}-1\right)}{(\mathrm{r}-1)}=\frac{5 \mathrm{a}\left(\mathrm{r}^{2 \mathrm{n}}-1\right)}{\mathrm{r}^{2}-1} \Rightarrow \mathrm{r}+1=5 \quad \Rightarrow \quad \mathrm{r}=4
\end{aligned}
$$

