TM

Daily Practice Problems

JEE MATHS

Topic: Trigonometric Equation
Q. 1 The general solution of $\tan \left(\frac{2}{3} \theta\right)=\sqrt{3}$ is -
(A) $\frac{3 n \pi}{2}+\frac{\pi}{2} ; \mathrm{n} \in \mathrm{I}$
(B) $\frac{\mathrm{n} \pi}{2} ; \pm \frac{\pi}{2} \mathrm{n} \in \mathrm{I}$
(C) $n \pi \pm \frac{\pi}{2} ; n \in I$
(D) None of these
Q. 2 If $\tan \theta+\tan 2 \theta+\tan \theta \tan 2 \theta=1$ then general value of θ is -
(A) $n \pi ; n \in I$
(B) $\mathrm{n} \pi \pm \frac{\pi}{3} ; \mathrm{n} \in \mathrm{I}$
(C) $\frac{\mathrm{n} \pi}{3}+\frac{\pi}{12} ; \mathrm{n} \in \mathrm{I}$
(D) none of these
Q. 3 Find the general value of θ, when $\sec \theta=\frac{2}{\sqrt{3}}$
(A) $n \pi+\frac{\pi}{6}$
(B) $n \pi-\frac{\pi}{6}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$
(D) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}$
Q. 4 Find the general value of θ, when $\cos \left(\frac{-\theta}{2}\right)=0$
(A) $(\mathrm{n}+1) \pi ; \mathrm{n} \in \mathrm{I}$
(B) $n \pi ; n \in I$
(C) $(2 n+1) \pi ; n \in I$
(D) $2 n \pi ; n \in I$
Q. 5 If $\tan \mathrm{a} \theta-\tan \mathrm{b} \theta=0$, then the values of θ for a series in -
(A) A.P.
(B) G.P.
(C) H.P.
(D) None of these
Q. 6 Find the general solution of $2 \sin x+\tan x=0$
(A) $n \pi,(3 k \pm 1) \frac{2 \pi}{3} ; k \in I$
(B) $2 n \pi,(3 k+1) \frac{2 \pi}{3} ; k \in I$
(C) $2 n \pi,(3 k \pm 1) \frac{2 \pi}{3} ; k \in I$
(D) None of these
Q. 7 The solution set of
$(2 \cos x-1)(3+2 \cos x)=0$ in the interval $0 \leq x \leq 2 \pi$ is-
(A) $\{\pi / 3\}$
(B) $\{\pi / 3,5 \pi / 3\}$
(C) $\left\{\pi / 3,5 \pi / 3, \cos ^{-1}(-3 / 2)\right\}$
(D) None of these
Q. 8 The general solution of the equation $\tan ^{2} \theta+2 \sqrt{3} \tan \theta=1$ is given by -
(A) $\theta=\frac{\pi}{2}$
(B) $\left(\mathrm{n}+\frac{1}{2}\right) \pi$
(C) $(6 n+1) \frac{\pi}{12}$
(D) $\frac{\mathrm{n} \pi}{12}$
Q. 9 If $\cos \theta+\cos 7 \theta+\cos 3 \theta+\cos 5 \theta=0$, then $\theta=$
(A) $\frac{\mathrm{n} \pi}{4} ; \mathrm{n} \in \mathrm{I}$
(B) $\frac{\mathrm{n} \pi}{2} ; \mathrm{n} \in \mathrm{I}$
(C) $\frac{\mathrm{n} \pi}{8} ; \mathrm{n} \in \mathrm{I} ; \mathrm{n} \neq \mathbf{8 k}$
(D) $\frac{\mathrm{n} \pi}{3} ; \mathrm{n} \in \mathrm{I}$
Q. 10 The value of θ satisfying $\sin 7 \theta=\sin 4 \theta-\sin \theta$ and $0<\theta<\pi / 2$ are -
(A) $\frac{\pi}{9}, \frac{\pi}{4}$
(B) $\frac{\pi}{3}, \frac{\pi}{9}$
(C) $\frac{\pi}{6}, \frac{\pi}{9}$
(D) $\frac{\pi}{3}, \frac{\pi}{4}$
Q. 11 The general solutions of the equation $\sec ^{2} x=\sqrt{2}\left(1-\tan ^{2} x\right)$ are given by-
(A) $n \pi+\frac{\pi}{8}$
(B) $\mathrm{n} \pi \pm \frac{\pi}{4}$
(C) $n \pi \pm \frac{\pi}{8}$
(D) None of these
Q. 12 The general solution of the equation
$7 \cos ^{2} x+\sin x \cos x-3=0$ is given by-
(A) $n \pi+\frac{\pi}{2}(n \in I)$
(B) $n \pi-\frac{\pi}{4}(n \in I)$
(C) $n \pi+\tan ^{-1} \frac{4}{3}(n \in I)$
(D) $\mathrm{n} \pi-\frac{\pi}{4}, \mathrm{k} \pi+\tan ^{-1} \frac{4}{3}(\mathrm{n}, \mathrm{k} \in \mathrm{I})$
Q. 13 Find the general solution of x, $\cos ^{2} 2 x+\cos ^{2} 3 x=1$
(A) $(2 k+1) \frac{\pi}{10}, k \in I$
(B) $(\pi k+1) \frac{\pi}{10} ; k \in I$
(C) $(2 k-1) \frac{\pi}{10}, k \in I$
(D) Both (A) and (C)
Q. 14 The set of values of \mathbf{x} for which $\sin x . \cos ^{3} x>\cos x \cdot \sin ^{3} x, 0 \leq x \leq 2 \pi$, is-
(A) $(0, \pi)$
(B) $\left(0, \frac{\pi}{4}\right)$
(C) $\left(\frac{\pi}{4}, \pi\right)$
(D) None of these
Q. 15 The general solution of the equation $(\sqrt{3}-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2$ is -
(A) $2 \mathrm{n} \pi \pm \frac{\pi}{4}+\frac{\pi}{12}$
(B) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}+\frac{\pi}{12}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{4}-\frac{\pi}{12}$
(D) $\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{4}-\frac{\pi}{12}$
Q. 16 If $0 \leq x \leq 2 \pi, 0 \leq y \leq 2 \pi$ and $\sin x+\sin y=2$ then the value of $x+y$ is-
(A) π
(B) $\pi / 2$
(C) 3π
(D) None of these
Q. 17 If $x \in\left[-\frac{5 \pi}{2}, \frac{5 \pi}{2}\right]$, the greatest positive solution of $1+\sin ^{4} x=\cos ^{2} 3 x$ is-
(A) π
(B) 2π
(C) $5 \pi / 2$
(D) None of these
Q. 18 If $\cos x=\sqrt{1-\sin 2 x}, 0<x<\pi$, then a value of x is-
(A) $\tan ^{-1} 2$
(B) 0
(C) π
(D) None of these
Q. 19 The number of values of x in $[0,5 \pi]$ satisfying the equation $3 \cos 2 x-10 \cos x+7=0$ are-
(A) 5
(B) 6
(C) 8
(D) 10
Q. 20 Total number of solution of
$16^{\cos ^{2} x}+16^{\sin ^{2} x}=10$ in $x \in[0,3 \pi]$ is equal to-
(A) 4
(B) 8
(C) 12
(D) 16
Q. 21 The solution of the equation
$\log _{2}(\sin x+\cos x)-\log _{2}(\cos x)+1=0:$
(A) $\tan ^{-1}\left(-\frac{1}{2}\right)$
(B) 0
(C) $\tan ^{-1}\left(\frac{1}{2}\right)$
(D) None of these
Q. 22 The set of solution satisfying inequality $|\sin x|<\frac{1}{2}$ is-
(A) $\left(\mathrm{n} \pi, \mathrm{n} \pi+\frac{\pi}{6}\right)(\mathrm{n} \in \mathrm{I})$
(B) $\left(2 \mathrm{n} \pi, 2 \mathrm{n} \pi+\frac{\pi}{6}\right)$
(C) $\left(\mathrm{n} \pi+\frac{\pi}{6}, \mathrm{n} \pi+\frac{5 \pi}{6}\right)$
(D) None of these
Q. 23 The solution of equation
$13-4 \cos ^{2} x=12 \sin x$ is -
(A) $n \pi+(-1)^{n} \sin ^{-1}\left(\frac{3}{2}\right)$
(B) $n \pi+(-1)^{n} \sin ^{-1}\left(-\frac{3}{2}\right)$
(C) $n \pi$
(D) No solution
Q. 24 The solution set of equation $\cos ^{5} x=1+\sin ^{4} x$ is-
(A) $n \pi(n \in I)$
(B) $2 \mathrm{n} \pi(\mathrm{n} \in \mathrm{I})$
(C) $4 \mathrm{n} \pi(\mathrm{n} \in \mathrm{I})$
(D) None of these
Q. 25 The number of ordered pairs (x, y) satisfying $y=2 \sin x$ and $y=5 x^{2}+2 x+3$ is -
(A) 0
(B) 1
(C) 2
(D) ∞
Q. 26 If $0 \leq x \leq 3 \pi, 0 \leq y \leq 3 \pi$ and $\cos x \cdot \sin y=1$ then the possible number of values of the ordered pair (x, y) is -
(A) 6
(B) 12
(C) 8
(D) 15
Q. 27 The most general values of x for which
$\sin x+\cos x=\min _{a \in R}\left\{1, a^{2}-4 a+6\right\}$ are given by -
(A) $2 n \pi$
(B) $\mathbf{2 n} \pi+\frac{\pi}{2}$
(C) $n \pi+(-1)^{n} \cdot \frac{\pi}{4}-\frac{\pi}{4}$
(D) None of these
Q. 28 The number of distinct solutions of $\sin 5 \theta \cdot \cos 3 \theta=\sin 9 \theta . \cos 7 \theta$ in $[0, \pi / 2]$ is-
(A) 4
(B) 5
(C) 8
(D) 9
Q. 29 The values of $x \in[-2 \pi, 2 \pi]$ such that $\frac{\sin x+i \cos x}{1+i}, i=\sqrt{-1}$, is purely imaginary, are given by -
(A) $n \pi-\frac{\pi}{4}$
(B) $n \pi+\frac{\pi}{4}$
(C) $n \pi$
(D) None of these
Q. 30 The general solution of the equation $\tan 2 \theta \cdot \tan \theta=1$ for $n \in I$ is, θ is equal to-
(A) $(2 n+1) \frac{\pi}{4}$
(B) $(2 n+1) \frac{\pi}{6}$
(C) $(2 n+1) \frac{\pi}{2}$
(D) $(2 n+1) \frac{\pi}{3}$

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	A	D	C	C	A	A	B	C	C	A
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	C	D	D	B	A	A	B	A	C	C
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	A	D	D	B	A	A	C	D	A	B

