JEE MATHS

Topic: Sequence and Series

Q. 1 Find the sum of all the even positive integers less than 200 which are not divisible by 6-
(A) 6535
(B) 6539
(C) 6534
(D) 6532
Q. 2 The sum of n terms of the series $\log a+\log \frac{a^{2}}{b}+\log \frac{a^{3}}{b^{2}}+\ldots$ is-
(A) $n \log \left(\frac{a}{b}\right)$
(B) $n \log (a b)$
(C) $\frac{n^{2}}{2} \log \frac{a}{b}+\frac{n}{2} \log (a b)$
(D) $\frac{n^{2}}{2} \log \frac{a}{b}-\frac{n}{2} \log (a b)$
Q. 3 The sum of 40 terms of the series
$1+2+3+4+5+8+7+16+9+\ldots$ is-
(A) $398+2^{20}$
(B) $398+2^{21}$
(C) $398+2^{19}$
(D) None of these
Q. 4 If first and $(2 n-1)^{\text {th }}$ terms of an A.P., G.P. and H.P. are equal and their $n^{\text {th }}$ terms are respectively a, b, c, then -
(A) $a=b=c$
(B) $a+c=b$
(C) $a c-b^{2}=0$
(D) None of these
Q. 5 Certain numbers appear in both the arithmetic progressions $17,21,25 \ldots$...and $16,21,26 \ldots$ find the sum of the first two hundred terms appearing in both-
(A) 4022
(B) 402200
(C) 201100
(D) 398000
Q. 6 If S denotes the sum to infinity and S_{n} the sum of n terms of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$. , such that $S-S_{n}$.$<\frac{1}{1000}$, then the least value of n is-
(A) 11
(B) 9
(C) 10
(D) 8
Q. 7 The sum of 10 terms of the series
$\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\ldots$. is -
(A) $\left(\frac{x^{20}-1}{x^{2}-1}\right)\left(\frac{x^{22}+1}{x^{20}}\right)+20$
(B) $\left(\frac{x^{18}-1}{x^{2}-1}\right)\left(\frac{x^{11}+1}{x^{9}}\right)+20$
(C) $\left(\frac{x^{18}-1}{x^{2}-1}\right)\left(\frac{x^{11}-1}{x^{9}}\right)+20$
(D) None of these
Q. 8 If $0<x, y, a, b<1$, then the sum of the infinite terms of the series

$$
\begin{aligned}
& \sqrt{x}(\sqrt{a}+\sqrt{x})+\sqrt{x}(\sqrt{a b}+\sqrt{x y}) \\
&+\sqrt{x}(b \sqrt{a}+y \sqrt{x})+\ldots \text { is- }
\end{aligned}
$$

(A) $\frac{\sqrt{a x}}{1+\sqrt{b}}+\frac{x}{1+\sqrt{y}}$
(B) $\frac{\sqrt{x}}{1+\sqrt{b}}+\frac{x}{1+\sqrt{y}}$
(C) $\frac{\sqrt{x}}{1-\sqrt{b}}+\frac{\sqrt{x}}{1-\sqrt{y}}$
(D) $\frac{\sqrt{a x}}{1-\sqrt{b}}+\frac{x}{1-\sqrt{y}}$
Q. 9 If sum of 3 terms of a G.P. is S. product is P, and sum of reciprocal of its terms is R, then $\mathrm{P}^{2} \mathrm{R}^{3}$ equals to -
(A) S
(B) S^{3}
(C) $2 \mathrm{~S}^{2}$
(D) $\mathrm{S}^{2} / \mathrm{R}$
Q. 10 If A and G are respectively A.M. and G.M. of roots of a quadratic equation, then it is-
(A) $x^{2}+2 A x+G^{2}=0$
(B) $x^{2}-2 A x+G^{2}=0$
(C) $x^{2}-A x+G=0$
(D) None of these
Q. 11 If t_{n} be the $n^{\text {th }}$ term of an A.P. and if $t_{7}=9$, then the value of the c.d. that would make $t_{1} t_{2} t_{7}$ least is-
(A) $33 / 40$
(B) $33 / 20$
(C) $33 / 10$
(D) None of these
Q. 12 If $\mathrm{m}^{\text {th }}$ terms of the series $63+65+67+69+\ldots$. and $3+10+17+24+\ldots$ be equal, then $m=$
(A) 11
(B) 12
(C) 13
(D) 15
Q. 13 A ball falls from a height of 100 mts . on a floor. If in each rebound it describes $4 / 5$ height of the previous falling height, then the total distance travelled by the ball before coming to rest is-
(A) ∞
(B) 500 mts
(C) 1000 mts
(D) 900 mts
Q. 14 If A, G and H are respectively A.M., G.M., and H.M. of three positive numbers a, b and c , then the equation whose roots are a, b and c is given by-
(A) $x^{3}-3 A x^{2}+3 G^{3} x+G^{3}=0$
(B) $x^{3}-3 A x^{2}+3\left(G^{3} / H\right) x-G^{3}=0$
(C) $x^{3}+3 A x^{2}+3\left(G^{3} / H\right) x-G^{3}=0$
(D) $x^{3}-3 A x^{2}-3\left(G^{3} / H\right) x+G^{3}=0$
Q. 15 The G.M. of roots of the equation $x^{2}-2 a x+b^{2}=0$ is equal to which type of mean of roots of $x^{2}-2 b x+a^{2}=0$?
(A) A.M.
(B) G.M.
(C) H.M.
(D) None of these
Q. 16 The maximum sum of the series $20+19 \frac{1}{3}+18 \frac{2}{3}+\ldots \ldots$. is -
(A) 310
(B) 300
(C) 320
(D) None of these
Q. 17 Let a, b be the roots of $x^{2}-3 x+p=0$ and let c, d be the roots of $x^{2}-12 x+q=0$, where a, b, c, d form an increasing G.P. Then the ratio of $q+p: q-p$ is equal to -
(A) $8: 7$
(B) $11: 10$
(C) $17: 15$
(D) None of these
Q. 18 If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$, then a, b, c, d are in -
(A) A.P.
(B) G.P.
(C) H.P.
(D) None of these
Q. 19 The sum of the first n terms of the series $\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+\ldots \ldots . .$. is -
(A) $\frac{6 n}{n+1}$
(B) $\frac{9 n}{n+1}$
(C) $\frac{12 n}{n+1}$
(D) $\frac{15 n}{n+1}$
Q. 20 If $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{r}}=2\left(3^{\mathrm{n}}-1\right) \forall \mathrm{n} \geq 1$, then $\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=1}^{\mathrm{n}} \frac{1}{\mathrm{t}_{\mathrm{r}}}=$
(A) 3
(B) $\frac{3}{2}$
(C) $\frac{3}{4}$
(D) $\frac{3}{8}$
Q. 21 Let the sequence $a_{1}, a_{2}, a_{3}, \ldots . . ., a_{n}$ form an A.P., then $a_{1}{ }^{2}-a_{2}{ }^{2}+a_{3}{ }^{2}-a_{4}{ }^{2}+\ldots . . .+a_{2 n-1}{ }^{2}-a_{2 n}{ }^{2}$ is equal to -
(A) $\frac{n}{2 n-1}\left(a_{1}{ }^{2}-a_{2 n}{ }^{2}\right)$
(B) $\frac{2 n}{n-1}\left(a_{2 n}{ }^{2}-a_{1}{ }^{2}\right)$
(C) $\frac{n}{n+1}\left(a_{1}{ }^{2}+a_{2 n}{ }^{2}\right)$
(D) None of these
Q. 22 If $1, \log _{9}\left(3^{1-x}+2\right)$ and $\log _{3}\left(4.3^{x}-1\right)$ are in A.P., then x is equal to -
(A) $\log _{4} 3$
(B) $\log _{3} 4$
(C) $1-\log _{3} 4$
(D) $\log _{3} 0.25$
Q. 23 If S_{1}, S_{2}, S_{3} are the sums of first n natural numbers, their squares, their cubes respectively, then $\frac{S_{3}\left(1+8 S_{1}\right)}{S_{2}{ }^{2}}$ is equal to -
(A) 1
(B) 3
(C) 9
(D) 10
Q. 24 The sum of three consecutive terms in a geometric progression is 14 . If 1 is added to the first and the second terms and 1 is subtracted from the third, the resulting new terms are in arithmetic progression. Then the lowest of the original terms is -
(A) 1
(B) 2
(C) 4
(D) 8
Q. 25 If S_{n} denotes the sum of n terms of an A.P., then $S_{n+3}-3 S_{n+2}+3 S_{n+1}-S_{n}$ is equal to -
(A) 0
(B) 1
(C) $1 / 2$
(D) 2
Q. 26 If $a_{1}, a_{2}, a_{3}, \ldots . . ., a_{24}$ are in A.P. and $a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$, then $a_{1}+a_{2}+a_{3}+\ldots . . .+a_{23}+a_{24}$ is equal to-
(A) 909
(B) 75
(C) 750
(D) 900
Q. 27 The value of $x+y+z$ is 15 if a, x, y, z, b are in A.P. while the value of $\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$ is $\frac{5}{3}$ if a, X, Y, Z, b are in H.P., then a and b are-
(A) 1,9
(B) 3,7
(C) 7, 3
(D) 9, 1
Q. 28 If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x \sec ^{2} x d x$, then $I_{1}, I_{2}, I_{3}, \ldots$ are in -
(A) A. P.
(B) G.P.
(C) H.P.
(D) None of these
Q. 29 A G.P. consists of $2 n$ terms. If the sum of the terms occupying the odd places is S_{1} and that of the terms at the even places is S_{2}, then S_{2} / S_{1} is -
(A) Dependent on a
(B) Independent of r
(C) Independent of a and r
(D) Dependent on r
Q. 30 If $x^{18}=y^{21}=z^{28}$, then $3,3 \log _{y} x, 3 \log _{z} y, 7 \log _{x} z$ are in -
(A) A.P.
(B) G.P.
(C) H.P.
(D) None

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	C	C	B	C	B	A	A	D	B	B
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	B	C	D	B	A	A	C	B	A	D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	A	C	C	B	A	D	A-D	C	D	A

