TM

Topic: Quadratic Equation

Q.1 The roots of quadratic equation $x^2 + 14x + 45 = 0$ are -

- (A) 9, 5
- (B) 5, 9
- (C) 5, 9
- (D) 5, -9

Q.2 Roots of the equation

$$(a + b - c)x^2 - 2ax + (a - b + c) = 0$$

- (a,b,c \in Q) are –
- (A) rational

(B) irrational

(C) complex

(D) none of these

Q.3 The difference between the roots of the equation $x^2 - 7x - 9 = 0$ is -

- (A) 7
- **(B)** $\sqrt{85}$
- (C) 9
- (D) 2 $\sqrt{85}$

Q.4 If one root of $ax^2 + bx + c = 0$ be square of the other, then the value of $b^3 + ac^2 + a^2c$ is-

- (A) 3 abc
- (B) 3abc
- (C) 0
- (D) None of these

Q.5 If α and β are roots of $2x^2 - 3x - 6 = 0$, then the equation whose roots are $\alpha^2 + 2$ and $\beta^2 + 2$ will be -

- (A) $4x^2 + 49x 118 = 0$
- (B) $4x^2 49x 118 = 0$
- (C) $4x^2 49x + 118 = 0$
- (D) $4x^2 + 49x + 118 = 0$

Q.6 If α and β are roots of $2x^2 - 7x + 6 = 0$, then the quadratic equation whose roots are $-\frac{2}{\alpha}$, $-\frac{2}{\beta}$ is-

(A)
$$3x^2 + 7x + 4 = 0$$

(B)
$$3x^2 - 7x + 4 = 0$$

(C)
$$6x^2 + 7x + 2 = 0$$

(D)
$$6x^2 - 7x + 2 = 0$$

Q.7 The roots of the equation $ax^2 + bx + c = 0$ will be imaginary if -

(A)
$$a > 0$$
, $b = 0$, $c < 0$

(B)
$$a > 0$$
, $b = 0$, $c > 0$

(C)
$$a = 0, b > 0, c > 0$$

(D)
$$a > 0$$
, $b > 0$, $c = 0$

Q.8 If roots of the equation $\ell x^2 + mx - 2 = 0$ are reciprocal of each other, then-

(A)
$$\ell = 2$$

(B)
$$\ell = -2$$

(C)
$$m = 2$$

(D)
$$m = -2$$

Q.9 The equation $ax^2 + bx + a = 0 & x^3 - 2x^2 + 2x - 1 = 0$ have two root in common, then (a + b) is equal to -

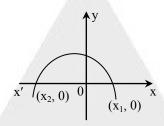
$$(C) -1$$

Q.10 For all real values of x, the maximum value of the expression $\frac{x}{x^2 - 5x + 9}$ is-

Q.11 If x be real then the minimum value of

$$40 - 12x + x^2$$
 is -

$$(C) -4$$


Q.12 If for real values of x, $x^2 - 3x + 2 > 0$ and $x^2 - 3x - 4 \le 0$, then-

(A)
$$-1 \le x < 1$$

(B)
$$-1 \le x < 4$$

- (C) $-1 \le x < 1$ and $2 < x \le 4$
- (D) 2 < x ≤ 4
- Q.13 If $x^2 + 2xy + 2x + my 3$ have two rational factors then m is equal to -
 - (A) 6, 2
- (B) 6, 2
- (C) 6, -2
- (D) -6, -2
- Q.14 The diagram shows the graph of

$$y = ax^2 + bx + c$$
. Then-

- (A) a > 0
- (B) $b^2 4ac < 0$
- (C) c > 0
- (D) $b^2 4ac = 0$
- Q.15 The maximum value of the function y = $\frac{1}{4x^2 + 2x + 1}$ is-
 - (A) $\frac{4}{3}$
- (B) $\frac{5}{2}$
- (c) $\frac{13}{4}$
- (D) None of these
- Q.16 For what values of p, the roots of the equation $12(p + 2)x^2 12(2p 1)x 38p 11 = 0$ are imaginary-
 - (A) $p = R^{-}$
 - (B) $p \in (-\infty, -1) \cup \left(-\frac{1}{2}, \infty\right)$
 - (C) $p \in \left(-1, -\frac{1}{2}\right)$
 - (D) p = -1

Q.17 The equation whose roots are $\frac{q}{p+q}$, $\frac{-p}{p+q}$ is-

(A)
$$(p + q)^2 x^2 + (p^2 - q^2) x + pq = 0$$

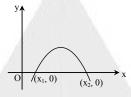
(B)
$$x^2 - \left(\frac{q-p}{q+p}\right)x - \frac{pq}{(q+p)^2} = 0$$

(C)
$$(p + q) x^2 + (p^2 - q^2) x - pq = 0$$

- (D) None of these
- Q.18 If one root of the equations $ax^2 + bx + c = 0$ and $x^2 + x + 1 = 0$ is common, then-

(A)
$$a + b + c = 0$$

(B)
$$a = b = c$$


(C)
$$a = b$$
 or $b = c$ or $c = a$

- (D) None of these
- Q.19 If x is real, then the values of the expression $\frac{(x+m)^2 4mn}{2(x-n)}$ are not -
 - (A) greater than (m + n)
 - (B) greater than (m + 2n)
 - (C) between 2m and 2n
 - (D) between m and m + n
- Q.20 If x is the real, then the value of the expression $\frac{2x^2 + 4x + 1}{x^2 + 4x + 2}$ is -
 - (A) any number
 - (B) only positive number
 - (C) only negative number
 - (D) only 1
- Q.21 If one root of the equations $ax^2 + bx + c = 0$ is equal to n^{th} power of the other root, then $(ac^n)^{1/(n+1)} + (a^nc)^{1/(n+1)}$ equals -

$$(A) - b$$

(C)
$$(-b)^{1/(n+1)}$$

- Q.22 If x > 1, then the minimum value of the expression $2 \log_{10} x \log_x (0.01)$ is -
 - (A) 2
- (B) 4
- (C) 1
- (D) None of these
- Q.23 If $7^{\log_7(x^2-4x+5)} = x 1$, x may have values -
 - (A) 2, 3
- (B) 7
- (C) 2, -3
- (D) 2, 3
- Q.24 The adjoining figure shows the graph of $y = ax^2 + bx + c$. Then -

- (A) a < 0
- (B) $b^2 < 4ac$
- (C) c > 0
- (D) a and b are of opposite signs
- Q.25 The expression $y = ax^2 + bx + c$ has always the same sign as c if -
 - (A) $4ac < b^2$
- (B) $4ac > b^2$
- (C) ac < b²
- (D) ac $> b^2$
- Q.26 If the roots of the equation (x a)(x b) k = 0 be c & d then find the equation whose roots are a & b-

(A)
$$(x-c)(x-d)+k=0$$

(B)
$$(x + c) (x - a) + k = 0$$

(C)
$$(x-c) + (x-a) = 0$$

- (D) None of these
- Q.27 The product of all the solutions of the equation

$$(x-2)^2-3|x-2|+2=0$$
 is

- (A) 0
- (B) 2
- (C) -4
- (D) None of these
- Q.28 If a, b, c are all positive and in H.P., then the roots of $ax^2 + 2bx + c = 0$ are -
 - (A) Real

(B) Imaginary

(C) Rational

(D) Equal

Q.29 The number of real roots of the equation

$$(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$$
 is -

- (A) 1
- (B) 2
- (C) 3
- (D) None of these

Q.30 If α , β are the roots of $ax^2 + bx + c = 0$; $\alpha + h$, $\beta + h$ are the roots of $px^2 + qx + r = 0$, and D_1 , D_2 the respective discriminants of these equations, then $D_1 : D_2$ -

- (A) $\frac{a^2}{p^2}$
- **(B)** $\frac{b^2}{q^2}$
- (C) $\frac{c^2}{r^2}$
- (D) None of these

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	Α	В	А	С	А	В	В	В	А
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	С	С	С	A	С	В	В	С	А
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	Α	В	А	A-D	В	А	А	В	D	Α

Reg.Office: A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.