

Daily Practice Problems

JEE CHEMISTRY

Topic: Ionic Equilibrium

- Q.1 Find the percentage ionisation of 0.2 M acetic acid solution, whose dissociation constant is 1.8×10^{-5}
 - (A) 0.198 (B) 0.290
 - (C) 0.950 (D) None of these

Q.2 What will be the hydrogen ion concentration (moles L⁻¹) of 0.01 M HCN solution if it is 20% ionised
(A) 0.002 M
(A) 0.02 M
(D) 0.1 M

Q.3 The dissociation constant of a weak acid is 1.0 × 10⁻⁴. The equilibrium constant of its reaction with strong base is −

(A) 1.0×10^{-4} (B) 1.0×10^{-10} (C) 1.0×10^{10} (D) 1.0×10^{-14}

- Q.4
 The [H⁺] of a solution is 0.03 M. The pOH of this solution is –

 (A) 12.48
 (B) 10.48
 (C) 9.48
 (D) 13.48
- Q.5 The pH of a solution is 6.0. In this solution –

(A) $[H^+] = 100 [OH^-]$ (B) $[H^+] = 10 [OH^-]$ (C) $[H^+] = \frac{1}{10} [OH^-]$ (D) $[H^+] = [OH^-]$

- Q.6At 298 K, the ratio of number of pure water molecules to number of hydroxyl ions is –
(A) 1.8×10^{-9} (B) 5.55×10^8 (C) 10^7 (D) 6.02×10^{23}
- Q.7 A sufficient quantity of acid is added to change its pH from 5 to 2. Its hydrogen ion concentration is increased by
 - (A) 100 times,
 - (B) 1000 times,
 - (C) 2.50 times,
 - (D) 5 times,

www.aggarwaleducare.com

Q.8 A 0.01 M acetic acid solution is 1.0% ionised. An another acetic acid is 10% ionised. What will be the concentration of another acetic acid -

(A) 0.001 M	(B) 0.0001 M				
(C) 0.01 M	(D) 0.1 M				

Q.9 For a 100 ml solution of 10⁻² M NaOH the ratio pH: pOH would be –

(A) 6 : 1	(B) 1 : 6

(C) 2 :1 (D) 10¹⁰: 1

Q.10 How many moles of HCl must be removed from 1 litre of aqueous HCl solution to change its pH from 2 to 3 -(A) 1 (B) 0.02 (C) 0.009 (D) 0.01

- Q.11 0.01 M Acetic acid is 12.5 % dissociated. Its pH will be (A) 4.509 (B) 3.723 (C) 2.903 (D) 5.623
- Q.12 10⁻² mole of KOH is dissolved in 10 litres of water. The pH of the solution is –

(A) 12	(B) 2		
(C) 3	(D) 11		

Q.13 % hydrolysis of 0.1M CH_3COONH_4 , when (A) 0.55 (B) 7.63 (C) 0.55 × 10⁻² (D) 7.63 × 10⁻³

Q.14 Given the two concentration of HCN are 0.1 M & 0.001 M respectively. What will be the ratio of degree of dissociation -

(A) 1 (B) 0.1 (C) 0.003 (D) 0.01

Q.15 On hydrolysis of sodium carbonate, the reaction takes place between – (A) Na⁺ and water (B) Na⁺ and OH⁻ (C) CO_3^{-2} and water (D) CO_3^{-2} and H⁺

Q.16 The pH of 0.001M sodium acetate solution is $[K_a(CH_3COOH) = 1.8 \times 10^{-5}] -$

(A) ≈ 11 (B) ≈ 6.5 (C) ≈ 14 (D) ≈ 8.0

Q.17 The pH of a buffer solution containing 0.1 mole of acetic acid and 0.15 mole of sodium acetate is (K_a for acetic acid = 1.75 x 10⁻⁵)-

(A) 4.9	(B) 3.0
(C) 4.2	(D) 5.4

Q.18 A certain buffer solution contains equal concentration of X⁻ and HX. The K_b for X⁻ is 1 x 10⁻¹⁰. The pH of the buffer is-

(A) 4	(B) 7
(C) 10	(D)14

- Q.19 In a buffer solution of a weak acid and its salt, if the ratio of concentration of salt to acid is raised 10 times then pH of the solution will-
 - (A) Increase ten times
 - (B) Decrease by one unit
 - (C) Decrease ten times
 - (D) Increase by one unit
- Q.20 500 ml of 0.2 M acetic acid are added to 500 ml of 0.30 M sodium acetate solution. If the dissociation constant of acetic acid is 1.5×10^{-5} then p^H of the resulting solution is –

(A) 5.0 (B) 9.0 (C) 3.0 (D) 4.0

Q.21 The pOH of a basic buffer (e.g. NH_4OH/NH_4CI) is 5. If the concentration of the salt is tripled whereas that of base remains same. What is the new value of pOH (Given log 3 \approx 0.48) –

(A) 4.52	(B) 5.48
(C) 6.48	(D) 3.52

Q.22 Let the solubility of AgCl in water, in 0.01 M CaCl₂, in 0.01 M NaCl and in 0.05 M AgNO₃ be s_1 , s_2 , s_3 and s_4 respectively. Which of the following relations between these quantities is correct –

(A) $s_1 > s_2 > s_3 > s_4$ (B) $s_1 > s_2 = s_3 > s_4$

(C) $s_4 > s_2 > s_3 > s_1$ (D) $s_1 > s_3 > s_2 > s_4$

Q.23 K_{so} of AgCl is 1×10^{-10} . Its solubility in 0.1 M KNO₃ will be –

(A) 10^{-5} moles/litre (B)> 10^{-5} moles/litre (C) < 10^{-5} moles/litre (D) None of these

www.aggarwaleducare.com

Q.24 At 298 K, how many milligrams of silver bromide can be dissolved in 20 litres of water – $[K_{sp (AgBr)} = 5.0 \times 10^{-13}]$

(Atomic wt. Ag = 108, Br = 80) (A) 2.66 (B) 3.66

- (C) 4.66 (D) None of these
- Q.25 At 25°C what will be the solubility of silver carbonate in 0.1 M Na₂CO₃ solution. At this temperature K_{sp} of silver carbonate is 4 × 10⁻¹³ –

(A) 2×10^{-7} (B) 2×10^{-6}

- (C) 10⁻⁶ (D) 10⁻⁷
- Q.26 When equal volumes of the following solutions are mixed, precipitation of CaF_2 ($K_{sp} = 1.7 \times 10^{-10}$) will occur only with –

(A) 10⁻⁴ M Ca²⁺ and 10⁻⁴ M F⁻

(B) 10^{-2} M Ca²⁺ and 10^{-3} M F⁻

(C) 10^{-5} M Ca²⁺ and 10^{-3} M F⁻

- (D) $10^{\text{--}3}$ M Ca^{2+} and $10^{\text{--}5}$ M F $^{\text{--}}$
- Q.27 At 25°C, the solubility product of Ca $(OH)_2$ is 32×10^{-12} . What will be the pOH of its saturated solution at this temperature -
 - (A) 3.4990 (B) 3.3980
 - (C) 0.3010 (D) None of these
- Q.28 In the hydrolysis of sodium acetate -
 - (A) Anions of the salt are hydrolysed
 - (B) Cations of the salt are hydrolysed
 - (C) Both of the above ions are not hydrolysed
 - (D) None of these
- Q.29 When HCl gas is passed through a impure saturated solution of common salt, pure NaCl is precipitated because
 - (A) The ionic product [Na $^{\scriptscriptstyle +}$] and [Cl $^{\scriptscriptstyle -}$] exceeds the solubility product of NaCl
 - (B) The impurities dissolve in HCl
 - (C) HCl is highly soluble in H_2O
 - (D) The solubility product of NaCl is lowered by the Cl^- ions from aqueous HCl

www.aggarwaleducare.com

Q.30 At 298K, the solubility of PbCl₂ is 6.3×10^{-3} moles L⁻¹. Its solubility product at this temprature is –

(A) $(6.3 \times 10^{-3}) \times (6.3 \times 10^{-3})$

- (B) $(6.3 \times 10^{-3}) \times (12.6 \times 10^{-3})$
- (C) $(6.3 \times 10^{-3}) \times (12.6 \times 10^{-3})^2$
- (D) $(12.6 \times 10^{-3}) \times (12.6 \times 10^{-3})$

				1						
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	с	А	с	A	А	В	В	В	А	с
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	с	D	А	В	с	D	А	A	D	А
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	В	D	А	А	с	В	В	А	А	с

ANSWER KEY