Daily Practice Problems

JEE CHEMISTRY

Topic: GOC
Q. 1 Which of the following belongs to + I group
(A) -OH
(B) $-\mathrm{OCH}_{3}$
(C) $-\mathrm{COOH}(\mathrm{D})-\mathrm{CH}_{3}$
Q. 2 Which of them is false for order of -I effect
(A) $-\mathrm{F}>-\mathrm{Cl}>-\mathrm{Br}>-\mathrm{I}$
(B) $-\stackrel{\oplus}{\mathrm{N}} \mathrm{R}_{3}>-\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{3}>-\mathrm{NO}_{2}$
(C) $-\mathrm{OCH}_{3}>-\mathrm{OH}>-\mathrm{NH}_{2}$
(D)

Q. 3 Which of the statement is not correct?
(A) $-\mathrm{NH}_{2}$ is ortho-para directing group
(B) - CHO is meta directing group
(C) : CCl_{2} is an electrophile
$(D)-\underset{̣}{0} \mathrm{H}$ is $(-M)$ group
Q. 4 Among the following compounds, the strongest acid is -
(A) $\mathrm{HC} \equiv \mathrm{CH}(\mathrm{B}) \mathrm{C}_{6} \mathrm{H}_{6}$
(C) $\mathrm{C}_{2} \mathrm{H}_{6}$
(D) $\mathrm{CH}_{3} \mathrm{OH}$
Q. 5 Heterolysis of propane will yield -
(A) $\dot{\mathrm{C}} \mathrm{H}_{3}$ and $\dot{\mathrm{C}}_{2} \mathrm{H}_{5}$ radicals
(B) CH_{3}^{-}and $\mathrm{CH}_{3} \mathrm{CH}_{2}^{+}$ions
(C) CH_{3}^{+}and $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$ions
(D) CH_{3}^{+}and $\mathrm{CH}_{3} \mathrm{CH}_{2}^{+}$ions
Q. 6 Carbocations may be stabilised by -
(A) π-bonds only at allylic position
(B) π-bonds only at vinylic position
(C) π-bonds at allylic and nonallylic position also
(D) - I effect
Q. 7 In the anion HCOO^{-}, the two carbon-oxygen bonds are found to be equal length. What is the reason for it -
(A) the $\mathrm{C}=\mathrm{O}$ bond is weaker than the $\mathrm{C}-\mathrm{O}$ bond
(B) the anion HCOO^{-}has two resonating structures
(C) the electronic orbitals of carbon atom are hybridized
(D) the anion of obtained by removal of proton from the acid molecule
Q. 8 Which of the following resonance structures is the major contributor to the resonance hybrid ?

(I)
$\Leftrightarrow \mathbf{C H}_{\mathbf{3}}-\mathbf{C H}_{\mathbf{2}} \mathbf{- \mathbf { C H } = \stackrel { \oplus } { . . } \mathrm { CH } _ { 3 } , ~}$
(II)
(A) I
(B) II
(C) Both have equal contribution
(D) They are not resonance structures

Reg.Office : A-14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.
Q. 9 Consider the following three halides -
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$
(b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{Cl}$

Arrange $\mathrm{C}-\mathrm{Cl}$ bond length of these compounds in decreasing order -
(A) $a>b>c(B) a>c>b$
(C) $c>b>a$
(D) b>c>a
Q. 10 The species $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{HCH}_{3}$ is less stable than -
(A) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(C) $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
(D) CH_{3}^{+}
Q. 11 Increasing order of electrophilic substitution for following compounds -

(I)

(II)

(III)

(IV)
(A) IV $<$ I $<$ II $<$ III
(B) III $<$ I $<$ II $<$ IV
(C) I $<$ IV $<$ III $<$ II
(D) II $<$ III $<$ I $<$ IV
Q. 12 Arrange in decreasing pK_{b} -
(a) $\mathrm{F}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
(b) $\underset{\substack{\mathrm{Cl} \\ \mathrm{Cl}}}{\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COOH}}$
(c) $\mathrm{F}-\mathrm{CH}_{2}-\mathrm{COOH}$
(d) $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$

Correct answer is -
(A) (b) $>$ (d) $>$ (a) $>$ (c)
(B) (a) $>$ (c) $>$ (d) $>$ (b)
(C) (c) $>$ (b) $>$ (a) $>$ (d)
(D) (d) $>$ (b) $>$ (a) $>$ (c)
Q. 13 The strongest base is -
(A)

(B)

(C)

(D) $\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{3}$
Q. 14 In which of the following cases, the carbocation (I) is less stable than the carbocation (II) ?
(A) $\mathrm{C}_{6} \mathrm{H}_{5}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$ (I), $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$ (II)
(B)

(C) $\mathrm{CH}_{2}=\stackrel{+}{\mathrm{C}} \mathrm{H}(\mathrm{I}), \mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$ (II)
(D)

Q. 15 Which among the following species is an ambident nucleophile -
(A) Acetone
(B) Cyanide ion
(C) Nitrite ion
(D) Sulphite ion
Q. 16 Which one of the nitrogen containing compounds is an electrophile :
(A) $\mathrm{NH}_{2}-\mathrm{NH}_{2}$
(B) $\mathrm{NH}_{2}-\mathrm{OH}$
(C) NF_{3}
(D) NH_{3}
Q. 17 Consider the following species
(a) $\stackrel{\ominus}{\mathrm{O}}_{\mathrm{H}}$
(b) $\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{O}}$
(c) $\stackrel{\ominus}{\mathrm{C}} \mathrm{H}_{3}$
(d) $\stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}$

Arrange these nucleophilic species in their decreasing order of nucleophilicity -
(A) c $>$ d $>$ b $>$ a
(B) b $>$ a $>c>d$
(C) a $>$ b $>$ c $>$ d
(D) c $>$ a $>$ b $>$ d
Q. 18 Which one of the following statements is not correct for electrophile :
(A) Electron deficient species are electrophile
(B) Electrophiles are Lewis acids
(C) All + ive charged species are electrophile
(D) $\mathrm{AlCl}_{3}, \mathrm{SF}_{6}, \mathrm{IF}_{7}$ and SO_{3} are electrophiles
Q. 19 Which of the following is an electrophilic reagent ?
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) OH^{-}
(C) $\mathrm{NO}_{2}{ }^{+}$
(D) none
Q. 20 Consider the following carbanions :
(I)

(II)

(III)

(IV)

Correct decreasing order of stability is -
(A) II $>$ III $>$ IV $>$ I
(B) III $>$ IV $>$ I $>$ II
(C) IV $>$ I $>$ II $>$ III
(D) I $>$ II $>$ III $>$ IV
Q. 21

(I)

(II)

(III)

Arrange following phenol in increasing order of pK_{a} value
(A) I $<$ II $<$ III
(B) III $<$ I $<$ II
(C) III $<$ II $<$ I (D) I $<$ III $<$ II
Q. 22

(I)

$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{COOH}$

(II)

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

(III)

Arrange following acid in decreasing order of $\left[\mathrm{H}^{+}\right]$conc.
(A) I $>$ II $>$ III
(B) II $>$ III $>$ I
(C) II $>$ I $>$ III(D) III $>$ II $>$ I
Q. 23 Arrange Increasing order of their K_{a} value.
oxalic acid,
I
malonic acid, adipic acid
III
II

IV
(all dibasic)
(A) III $<$ II $<$ I $<$ IV
(B) II $<$ III $>$ I $>$ IV
(C) I $>$ III $>$ II $>$ IV
(D) II $>$ I $>$ III $<$ IV
Q. 24 Arrange the following in Decreasing order of their pK_{a} value
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}, \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$,

1
II

$\mathrm{CH}=\mathrm{CCH}_{2} \mathrm{NH}_{2}$

III
(A) I $>$ II $<$ III
(B) II $>$ I $>$ III
(C) III $>$ II $>$ I (D) II $<$ III $<$ I
Q. 25 Arrange the following in increasing of pH value

(I)

(II)

(III)
(A) III $>$ I $>$ II
(B) III $<$ I $<$ II
(C) III $<$ II $>$ I
(D) II $<$ III $<$ I
Q. 26 Arrange in Increasing of basic strength

(I)

(II)

(III)
(A) II $<$ III $<$ I
(B) I $>$ II $>$ III
(C) III $>$ II $<$ I(D) I $<$ II $<$ III
Q. 27 Electrophile $\stackrel{\oplus}{\mathrm{N}} \mathrm{O}_{2}$ attacks the following

(I)

(II)

(III)

(IV)

In which cases $\stackrel{\oplus}{\mathrm{N}} \mathrm{O}_{2}$ will be meta-position :
(A) II and IV(B) I, II and III
(C) II and III only (D) I only
Q. 28 Arrange Decreasing order of basicity
$\mathbf{C l}^{-} \quad \mathbf{R C O O}^{-} \mathbf{O H}^{-} \quad \mathbf{R O}^{-} \quad \stackrel{\ominus}{\mathrm{N}} \mathrm{H}_{2}$
I II III IV V
(A) I $>$ II $<$ III $>$ IV $<$ V
(B) V $>$ IV $>$ II $>$ III $>$ I
(C) I $>$ II $>$ III $>$ IV $>$ V
(D) V $>$ IV $>$ III $>$ II $>$ I
Q. 29 Arrange the Stability of following

(I)

(II)

(III)
(A) I $<$ II $<$ III
(B) II $<$ I $<$ III
(C) I $<$ III $<$ II (D) II $<$ III $<$ I
Q. 30 Stability of following radical is

(A) II $>$ III $>$ II $>$ IV
(B) III $>$ II $>$ I $>$ IV
(C) III $<$ II $<$ I $<$ IV
(D) I $<$ IV $<$ II $<$ III

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	D	D	D	B	A	B	A	A	A
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	A	C	B	C	A	C	A	C	C	A
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	C	A	C	B	A	D	B	D	C	D

