Daily Practice Problems

JEE CHEMISTRY

Topic: Chemical Equilibrium

Q. 1 For the reaction : $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$; the degree of dissociation (α) of $\mathrm{HI}(\mathrm{g})$ is related to equilibrium constant K_{p} by the expression
(A) $\frac{1+2 \sqrt{\mathrm{~K}_{\mathrm{p}}}}{2}$
(B) $\frac{\sqrt{1+2 \mathrm{~K}_{\mathrm{p}}}}{2}$
(C) $\sqrt{\frac{2 \mathrm{~K}_{\mathrm{p}}}{1+2 \mathrm{~K}_{\mathrm{p}}}}$
(D) $\frac{2 \sqrt{\mathrm{~K}_{\mathrm{p}}}}{1+2 \sqrt{\mathrm{~K}_{\mathrm{p}}}}$
Q. 2 When 1 mole $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and 1 mole $\mathrm{CO}(\mathrm{g})$ are heated at $1000^{\circ} \mathrm{C}$ in a closed vessel of 5 litre, it was found that 40% of $\mathrm{H}_{2} \mathrm{O}$ react at equilibrium, according to
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
K_{c} of the reaction will be -
(A) 0.444
(B) 0.555
(C) 0.666
(D) 0.786
Q. 3 In a dilute solution there are two equilibria
$\mathrm{KCl}(\mathrm{s}) \rightleftharpoons \mathrm{K}^{+}+\mathrm{Cl}^{-} \ldots \mathrm{K}_{1}=10^{\mathrm{x}}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightleftharpoons \mathrm{AgCl}(\mathrm{s}) \ldots \mathrm{K}_{2}=10^{\mathrm{r}}$
The equilibrium, constant for the reaction
$\mathrm{Ag}^{+}+\mathrm{KCl}_{(s)} \rightleftharpoons \mathrm{K}^{\oplus}+\mathrm{AgCl}_{(s)}$
in dilute solution is -
(A) 10^{x+y}
(B) 10^{x-y}
(C) 10^{r}
(D) $\left(10^{x}\right)^{y}$
Q. $4 \quad \mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$.

For above reaction, $\Delta \mathrm{G} o$ (standard Gibb's free energy) will be :
(A) $\Delta G^{\circ}=-R T \ln \frac{1}{\mathrm{P}_{\mathrm{CO}_{2}}}$
(B) $\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \quad \ln \mathrm{P}_{\mathrm{CO}_{2}}$
(C) $\Delta G^{\circ}=-2 R T \ln P_{\mathrm{CO}_{2}}$
(D) none of these
Q. 5 The endothermic reaction $\mathrm{MCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{MO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ is taking place in such a way that the vapour pressure of CO_{2} is equal to atmospheric pressure. Which of the following is not correct ?
(A) $\Delta G O=0$
(B) $\mathrm{K}_{\mathrm{p}}=1$
(C) $\Delta \mathrm{G}=0$
(D) $\Delta H=0$
Q. 6 For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, if $\mathrm{K}_{\mathrm{p}}=64 \mathrm{~atm}^{2}$, equilibrium pressure of mixture is:
(A) 8 atm
(B) 16 atm
(C) 64 atm
(D) 4 atm
Q. 7 At 350C, the equilibrium constant for the reaction below is

$$
\begin{aligned}
& 2 \mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; \\
& \mathrm{K}_{\mathrm{c}}=1.6 \times 10^{-5}
\end{aligned}
$$

An equilibrium mixture was found to have the following concentration of Cl_{2} and $\mathrm{NOCl} .\left[\mathrm{Cl}_{2}\right]=1.2 \times 10^{-2} \mathrm{M}$, $[\mathrm{NOCl}]=2.8 \times 10^{-1} \mathrm{M}$. Calculate the concentration of $\mathrm{NO}(\mathrm{g})$ at equilibrium :
(A) $1.0 \times 10^{-4} \mathrm{M}$
(B) $1.0 \times 10^{-2} \mathrm{M}$
(C) $2.8 \times 10^{-1} \mathrm{M}$
(D) $2.4 \times 10^{-2} \mathrm{M}$
Q.8 2.0 mol of PCl_{5} were introduced in a vessel of 5.0 L capacity at a particular temperature. At equilibrium, PCl_{5} was found to be 35% dissociated into PCl_{3} and Cl_{2}. The value of K_{c} for the reaction is -
(A) 1.89
(B) 0.377
(C) 0.75
(D) 0.075
Q. 9 The reaction $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ is studied in a one litre vessel at $250^{\circ} \mathrm{C}$. The initial concentration of A was 3 n and the initial concentration of B was n. After equilibrium was attained then equilibrium concentration of C was found to be equal to equilibrium concentration of B. What is the concentration of D at equilibrium ?
(A) $n / 2$
(B) $(3 n-n / 2)$
(C) n
(D) None of these
Q. 10 Which of the following is not favourable for formation of SO_{3} ?
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}=-188 \mathrm{KJ}$
(A) High pressure
(B) High temperature
(C) Decreasing $\left[\mathrm{SO}_{3}\right]$
(D) Increasing $\left[\mathrm{SO}_{2}\right]$
Q. 11 On heating a mixture of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and CO , two equilibria are simultaneously established :
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$
On adding more SO_{2} at equilibrium what will happen ?
(A) Amount of CO will decrease
(B) Amount of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and COCl_{2} will increase
(C) Amount of CO will remain unaffected
(D) Amount of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and CO will increase
Q. 12 For the reaction, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$; if percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ are $25 \%, 50 \%, 75 \%$ and 100%, then the sequence of observed vapour densities will be -
(A) $d_{1}>d_{2}>d_{3}>d_{4}$
(B) $d_{4}>d_{3}>d_{2}>d_{1}$
(C) $d_{1}=d_{2}=d_{3}=d_{4}$
(D) $\left(d_{1}=d_{2}\right)>\left(d_{3}=d_{4}\right)$
Q. 13 Consider the reaction,
(i) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

The addition of an inert gas at constant volume -
(A) will increase the dissociation of PCl_{5} as well as $\mathrm{N}_{2} \mathrm{O}_{4}$
(B) will reduce the dissociation of PCl_{5} as well as $\mathrm{N}_{2} \mathrm{O}_{4}$
(C) will increase the dissociation of PCl_{5} and step up the formation of NO_{2}
(D) will not disturb the equilibrium of the reactions
Q. 14 At constant pressure, the presence of inert gases -
(A) reduces the dissociation of PCl_{5}
(B) increases the dissociation of PCl_{5}
(C) does not affect the degree of dissociation of PCl_{5}
(D) steps up the formation of PCl_{5}
Q. 15 In the reaction :
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
the equilibrium pressure was 3 atm at 1000 K . The K_{p} of the reaction -
(A) 27
(B) 4
(C) $4 / 27$
(D) $27 / 4$
Q. 16 In the decomposition reaction of ammonia :
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
2 moles of NH_{3} are introduced in the vessel of 1 litre. At equilibrium, 1 mole of NH_{3} was left, the value of K_{c} will be :
(A) 0.75
(B) 0.70
(C) 1.75
(D) 1.70
Q. 17 When ℓ nK is plotted against $\frac{1}{\mathrm{~T}}$ using the van't Hoff equation, a straight line is expected will a slope equal to -
(A) $\Delta H^{\circ} / R T(B)-\Delta H^{\circ} / R$
(C) $\Delta H^{\circ} / R$
(D) $\mathrm{R} / \Delta \mathrm{H}^{\circ}$
Q. 18 For the reaction, $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$, the forward reaction at constant temperature is favoured by I. introducing inert gas at constant volume.
II. introducing inert gas at constant pressure.
III. decreasing pressure of the reaction mixture.
IV. by adding PCl_{3} to the reaction mixture.
(A) I and II
(B) II and III
(C) I and III
(D) III and IV
Q. 19 Decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ takes place as follows :
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
' D ' is the vapour density at initial stage and ' d ' is the vapour density at equilibrium. We get following graph when the degree of dissociation 'a' is plotted against $\left(\frac{D}{d}\right)$

What is the value of $\frac{D}{d}$ at A ?
(A) 0
(B) 0.5
(C) 1
(D) 1.5
Q. 20 Percentage yield of following reaction is plotted against pressure at a definite temperature :

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}=-\mathrm{ve}
$$

Which of the following relation is correct?

(A) $T_{1}>T_{2}>T_{3}$
(B) $T_{3}>T_{2}>T_{1}$
(C) $T_{1}=T_{2}=T_{3}$
(D) $T_{1}>T_{2}<T_{3}$
Q. 21 The figure shows the change in concentration of species A and B as a function of time.

The equilibrium constant K_{c} for the reaction $A(g) \rightleftharpoons 2 B(g)$ is -

(A) $K_{C}>1$
(B) $\mathrm{K}<1$
(C) $K=1$
(D) data insufficient
Q. 22 Determine the value of equilibrium constant $\left(K_{c}\right)$ for the reaction

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{AB}(\mathrm{~g})
$$

If 10 moles of $A_{2} ; 15$ moles of B_{2} and 5 moles of $A B$ are placed in a 2 litre vessel and allowed to come to equilibrium. The final concentration of $A B$ is 7.5 M :
(A) 4.5
(B) 1.5
(C) 0.6
(D) None of these
Q. 23 Given the following reaction at equilibrium, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$. Some inert gas at constant pressure is added to the system. Predict which of the following facts will be affected ?
(A) More $\mathrm{NH}_{3}(\mathrm{~g})$ is produced
(B) Less $\mathrm{NH}_{3}(\mathrm{~g})$ is produced
(C) No affect on the equilibrium
(D) K_{p} of the reaction is decreased
Q. 24 Some inert gas is added at constant volume to the following reaction at equilibrium

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

Predict the effect of adding the inert gas -
(A) the equilibrium shifts in the forward direction
(B) the equilibrium shifts in the backward direction
(C) the equilibrium remains unaffected
(D) the value of K_{p} is increased
Q. 25 Consider the following reactions at equilibrium and determine which of the indicated changes will cause the reaction to proceed to the right -
(1) $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\left(\right.$ add $\left.\mathrm{CH}_{4}\right)$
(2) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ (remove $\left.\mathrm{NH}_{3}\right)$
(3) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HF}(\mathrm{g}) \quad\left(\right.$ add $\left.\mathrm{F}_{2}\right)$
(C) $\mathrm{BaO}(\mathrm{s})+\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{BaSO}_{4}(\mathrm{~s})$ (add BaO)
(A) 2, 3
(B) 1,4
(C) 2,4
(D) 2, 3, 4

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.
Q. 26 If the pressure in a reaction vessel for the following reaction is increased by decreasing the volume, what will happen to the concentrations of CO and CO_{2} ?
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+$ Heat
(A) both the $[\mathrm{CO}]$ and $\left[\mathrm{CO}_{2}\right]$ will decrease
(B) neither the $[\mathrm{CO}]$ nor the $\left[\mathrm{CO}_{2}\right]$ will change
(C) both [CO] will decrease and the $\left[\mathrm{CO}_{2}\right]$ will increase
(D) both the [CO] and $\left[\mathrm{CO}_{2}\right]$ will increase

COMPREHENSION BASED QUESTION 88

Passage : (Q. 27 \& Q.28)

For general reaction,

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

equilibrium constant K_{c} is given by the following relation.

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

However, when all reactants and products are gases, the equilibrium constant is generally expressed in terms of partial pressures. The relationship between the partial pressure (p) of any one gas in the equilibrium mixture and the molar concentrations can be correlated provided the gas behaves as an ideal gas.
Q. 27 The relation between partial pressure of the gas and its molar concentration at a given temperature T is -
(A) $p=\frac{\text { molar concentrat ion }}{T}$
(B) $\mathrm{p}=\frac{\text { molar concentration }}{\mathrm{RT}}$
(C) $p=$ molar concentration $\times R T$
(D) $p=$ molar concentration $\times T$
Q. 28 Equilibrium constant for the following reaction is

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

(A) $K_{p}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \times P$
(B) $K_{p}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \times \frac{(R T)^{c-d}}{(R T)^{a-b}}$
(C) $K_{p}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \times \frac{(R T)^{c+d}}{(R T)^{a+b}}$
(D) $K_{p}=\frac{K_{c} R T}{P}$

STATEMENT BASED QUESTION

88
Each of the questions given below consist of Statement - I and Statement - II. Use the following Key to choose the appropriate answer.
(A) If both Statement-I and Statement-II are true, and Statement - II is the correct explanation of Statement-I.
(B) If both Statement - I and Statement - II are true but Statement - II is not the correct explanation of Statement - 1 .
(C) If Statement - I is true but Statement - II is false.
(D) If Statement - I is false but Statement - II is true.
Q. 29 Statement - I. For the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}), \mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$.
Statement - II. K_{p} of all gaseous reactions is equal to K_{c}.
Q. 30 Statement-I. K_{p} is related to K_{c} by the relation,

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}
$$

Statement - II. K_{p} has same units as K_{c}.

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	A	A	B	D	B	B	D	A	B
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	A	D	B	B	D	B	B	C	A
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	A	A	B	C	A	D	C	C	C	C

