Daily Practice Problems

JEE MATHEMATICS

Topic: Hyperbola

Q. 1 The vertices of a hyperbola are at $(0,0)$ and $(10,0)$ and one of its foci is at $(18,0)$. The equation of the hyperbola is -
(A) $\frac{\mathrm{x}^{2}}{25}-\frac{\mathrm{y}^{2}}{144}=1$
(B) $\frac{(x-5)^{2}}{25}-\frac{y^{2}}{144}=1$
(C) $\frac{x^{2}}{25}-\frac{(y-5)^{2}}{144}=1$
(D) $\frac{(x-5)^{2}}{25}-\frac{(y-5)^{2}}{144}=1$
Q. 2 If the latus rectum of an hyperbola be 8 and eccentricity be $\frac{3}{\sqrt{5}}$, then the equation of the hyperbola is-
(A) $4 x^{2}-5 y^{2}=100$
(B) $5 x^{2}-4 y^{2}=100$
(C) $4 x^{2}+5 y^{2}=100$
(D) $5 x^{2}+4 y^{2}=100$
Q. 3 The foci of the hyperbola
$9 x^{2}-16 y^{2}+18 x+32 y-151=0$ are -
(A) $(2,3),(5,7)$
(B) $(4,1),(-6,1)$
(C) $(0,0),(5,3)$
(D) None of these
Q. 4 The foci of the hyperbola $4 x^{2}-9 y^{2}-36=0$ are-
(A) $[\pm \sqrt{11}, 0]$
(B) $[\pm \sqrt{12}, 0]$
(C) $[\pm \sqrt{13}, 0]$
(D) $[0, \pm \sqrt{12}]$
Q. 5 Foci of the hyperbola $\frac{x^{2}}{16}-\frac{(y-2)^{2}}{9}=1$ are
(A) $(5,2) ;(-5,2)$
(B) $(5,2) ;(5,-2)$
(C) $(5,2) ;(-5,-2)$
(D) None of these
Q. 6 The eccentricity of a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ passing through the points $(3,0),(3 \sqrt{2}, 2)$ will be-
(A) $\sqrt{13}$
(B) $\frac{\sqrt{13}}{3}$
(C) $\frac{\sqrt{13}}{4}$
(D) $\frac{\sqrt{13}}{2}$
Q. 7 Equation of the hyperbola with eccentricity $3 / 2$ and foci at $(\pm 2,0)$ is-
(A) $\frac{x^{2}}{4}-\frac{y^{2}}{5}=\frac{4}{9}$
(B) $\frac{x^{2}}{9}-\frac{y^{2}}{9}=\frac{4}{9}$
(C) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
(D) None of these
Q. 8 If the centre, vertex and focus of a hyperbola be $(0,0),(4,0)$ and $(6,0)$ respectively, then the equation of the hyperbola is-
(A) $4 x^{2}-5 y^{2}=8$
(B) $4 x^{2}-5 y^{2}=80$
(C) $5 x^{2}-4 y^{2}=80$
(D) $5 x^{2}-4 y^{2}=8$
Q. 9 The eccentricity of the hyperbola can never be equal to-
(A) $\sqrt{\frac{9}{5}}$
(B) $2 \sqrt{\frac{1}{9}}$
(C) $3 \sqrt{\frac{1}{8}}$
(D) $\sqrt{2}$
Q. 10 The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is-
(A) $\frac{4}{3}$
(B) $\frac{4}{\sqrt{3}}$
(C) $\frac{2}{\sqrt{3}}$
(D) None of these
Q. 11 If the length of the transverse and conjugate axes of a hyperbola be 8 and 6 respectively, then the difference of focal distances of any point of the hyperbola will be-
(A) 8
(B) 6
(C) 14
(D) 2
Q. 12 If m is a variable, the locus of the point of intersection of the lines $\frac{x}{3}-\frac{y}{2}=m$ and $\frac{x}{3}+\frac{y}{2}=\frac{1}{m}$ is a/an-
(A) parabola
(B) ellipse
(C) hyperbola
(D) None of these
Q. 13 The equation of the hyperbola whose foci are $(6,5),(-4,5)$ and eccentricity $5 / 4$ is-
(A) $\frac{(x-1)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
(B) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
(C) $\frac{(x-1)^{2}}{9}-\frac{(y-5)^{2}}{16}=1$
(D) None of these
Q. 14 The equation $\frac{x^{2}}{12-\lambda}+\frac{y^{2}}{8-\lambda}=1$ represents
(A) a hyperbola if $\lambda<8$
(B) an ellipse if $\lambda>8$
(C) a hyperbola if $8<\lambda<12$
(D) None of these
Q. 15 The equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a rectangular hyperbola if-
(A) $\Delta \neq 0, h^{2}>a b, a+b=0$
(B) $\Delta \neq 0, h^{2}<a b, a+b=0$
(C) $\Delta \neq 0, h^{2}=a b, a+b=0$
(D) None of these
Q. 16 The equation $\frac{\mathrm{x}^{2}}{1-\mathrm{k}}-\frac{\mathrm{y}^{2}}{1+\mathrm{k}}=1, \mathrm{k}>1$ represents-
(A) circle
(B) ellipse
(C) hyperbola
(D) None of these
Q. 17 If e and e^{\prime} be the eccentricities of two conics S and S^{\prime} such that $\mathrm{e}^{2}+\mathrm{e}^{\prime 2}=3$, then both S and S^{\prime} are-
(A) ellipse
(B) parabolas
(C) hyperbolas
(D) None of these
Q. 18 A point moves in a plane so that its distances $P A$ and $P B$ from two fixed points A and B in the plane satisfy the relation $|P A-P B|=k(k \neq 0)$, then the locus of P is-
(A) a parabola
(B) an ellipse
(C) a hyperbola
(D) a branch of a hyperbola
Q. 19 The equation of the conic with focus at (1, -1), directrix along $x-y+1=0$ and with eccentricity $\sqrt{2}$ is-
(A) $x^{2}-y^{2}=1$
(B) $x y=1$
(C) $2 x y-4 x+4 y+1=0$
(D) $2 x y+4 x-4 y-1=0$
Q. 20 The length of the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ is-
(A) $\frac{2 a^{2}}{b}$
(B) $\frac{2 b^{2}}{a}$
(C) $\frac{b^{2}}{a}$
(D) $\frac{a^{2}}{b}$
Q. 21 The equation $16 x^{2}-3 y^{2}-32 x+12 y-44=0$ represents a hyperbola-
(A) the length of whose transverse axis is $4 \sqrt{3}$
(B) the length of whose conjugate axis is 4
(C) whose centre is $(-1,2)$
(D) whose eccentricity is $\sqrt{\frac{19}{3}}$
Q. 22 The length of the transverse axis of a hyperbola is 7 and it passes through the point (5, -2). The equation of the hyperbola is-
(A) $\frac{4}{49} x^{2}-\frac{196}{51} y^{2}=1$
(B) $\frac{49}{4} x^{2}-\frac{51}{196} y^{2}=1$
(C) $\frac{4}{49} x^{2}-\frac{51}{196} y^{2}=1$
(D) none of these
Q. 23 The latus rectum of a hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{p}=1$ is $4 \frac{1}{2}$. Its eccentricity $\mathrm{e}=$
(A) $4 / 5$
(B) $5 / 4$
(C) $3 / 4$
(D) $4 / 3$
Q. 24 Consider the set of hyperbola $x y=k, k \in R$. Let e_{1} be the eccentricity when $k=4$ and e_{2} be the eccentricity when $k=9$. Then $e_{1}^{2}+e_{2}^{2}=$
(A) 2
(B) 3
(C) 4
(D) 1
Q. 25 The eccentricity of the hyperbola $-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is given by -
(A) $e=+\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}$
(B) $e=+\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
(C) $e=+\sqrt{\frac{b^{2}-a^{2}}{a^{2}}}$
(D) $e=+\sqrt{\frac{a^{2}+b^{2}}{b^{2}}}$
Q. 26 If e and e^{\prime} be the eccentricities of a hyperbola and its conjugate, then $\frac{1}{\mathrm{e}^{2}}+\frac{1}{\mathrm{e}^{\prime^{2}}}=$
(A) 0
(B) 1
(C) 2
(D) None of these
Q. 27 The equation of a tangent parallel to $y=x$ drawn to $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$ is-
(A) $x-y+1=0$
(B) $x-y+2=0$
(C) $x+y-1=0$
(D) $x-y+2=0$
Q. 28 The line $\mid x+m y+n=0$ will be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, if -
(A) $a^{2} l^{2}+b^{2} m^{2}=n^{2}$
(B) $a^{2} l^{2}-b^{2} m^{2}=n^{2}$
(C) $a m^{2}-b^{2} n^{2}=\left.a^{2}\right|^{2}$
(D) None of these
Q. 29 The equation of tangents to the hyperbola $x^{2}-4 y^{2}=36$ which are perpendicular to the line $x-y+4=0$
(A) $y=-x+3 \sqrt{3}$
(B) $y=x-3 \sqrt{3}$
(C) $y=-x \pm 2$
(D) None of these
Q. 30 The line $y=x+2$ touches the hyperbola $5 x^{2}-9 y^{2}=45$ at the point-
(A) $(0,2)$
(B) $(3,1)$
(C) $(-9 / 2,-5 / 2)$
(D) None of these

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	B	A	B	C	A	B	A	C	B	C
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	A	C	A	C	A	D	C	C	C	A
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	D	C	B	C	D	B	A	B	A	C

