TM

Daily Practice Problems

NEET PHYSICS

Topic: Gravitation
Q. 1 There is no atmosphere on moon because-
(1) The root mean square velocity of atoms is more than escape velocity
(2) The root mean square velocity of atoms is less than escape velocity
(3) There is no oxygen
(4) None of the above
Q. 2 If the radius of earth shrinks by 1% maintaining its mass, then ' g ' at the earth surface will-
(1) Decrease
(2) Increase
(3) Remain same
(4) Increase or decrease
Q. 3 If R is the average radius of earth, ω is its angular velocity about its axis and g is the gravitational acceleration on the surface of earth then the cube of the radius of orbit of a geostationary satellite will be equal to-
(1) $\frac{R^{2} g}{\omega}$
(2) $\frac{R^{2} \omega^{2}}{g}$
(3) $\frac{R g}{\omega^{2}}$
(4) $\frac{R^{2} g}{\omega^{2}}$
Q. 4 If the radius of a planet becomes half, where as its mass remains unchanged, then g becomes-
(1) Half
(2) Doubled
(3) Unchanged
(4) Four times
Q. 5 Orbital radius of a satellite S of earth is four times that of a communication satellite C. Period of revolution of S is-
(1) 4 days
(2) 8 days
(3) 16 days
(4) 32 days
Q. 6 A missile is launched with a velocity less than the escape velocity. Sum of its kinetic energy and potential energy is-
(1) Positive
(2) Negative
(3) May be negative or positive depending upon its initial velocity
(4) Zero
Q. 7 Time period of a satellite revolving round a planet in an orbit of radius R is T . Periodic time of a satellite moving in an orbit of radius $9 R$ will be-
(1) 27 T
(2) 81 T
(3) 729 T
(4) 3 T
Q. 8 More amount of sugar is obtained in 1 kg weight-
(1) At north pole
(2) At equator
(3) Between pole and equator
(4) At south pole
Q. 9 If a satellite is revolving very close to the surface of earth, then its orbital velocity does not depend upon-
(1) Mass of satellite
(2) Mass of earth
(3) Radius of earth
(4) Orbital radius
Q. 10 If the escape velocity from the surface of earth is v_{e} and velocity of a satellite revolving near the surface of earth is v then-
(1) $v=\sqrt{2} v_{e}$
(2) $v_{e}=2 v$

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.
(3) $v_{e} \approx \sqrt{2 v}$
(4) $v_{e} \approx \sqrt{2} v$
Q. 11 Two identical satellites are at the heights R and 7R from the earth's surface. Then which of the following statement is incorrect- ($R=$ radius of the earth)
(1) Ratio of total energy of both is 5
(2) Ratio of kinetic energy of both is 4
(3) Ratio of potential energy of both 4
(4) Ratio of total energy of both is 4
Q. 12 Imagine a body revolving around a big star in a circular orbit of radius R with time period T. If the force of attraction between star and the body is proportional to $\mathrm{R}^{-5 / 2}$, then T^{2} will be proportional to-
(1) R^{3}
(2) $R^{7 / 2}$
(3) $R^{3 / 2}$
(4) $R^{3.75}$
Q. 13 The minimum projection velocity of a body from the earth's surface so that it becomes the satellite of the earth $\left(R_{e}=6.4 \times 10^{6} \mathrm{~m}\right)$
(1) $11 \times 10^{3} \mathrm{~m} / \mathrm{s}$
(2) $8 \times 10^{3} \mathrm{~m} / \mathrm{s}$
(3) $6.4 \times 10^{3} \mathrm{~m} / \mathrm{s}$
(4) $4 \times 10^{3} \mathrm{~m} / \mathrm{s}$
Q. 14 Geostationary satellite-
(1) is situated at a great height above the surface of earth
(2) moves in equatorial plane
(3) have time period of 24 hours
(4) have time period of 24 hours and moves in equatorial plane
Q. 15 A planet whose mass and radius are both half of that of earth consists of a satellite. Acceleration due to gravity (g) at its surface should be-
(1) $29.4 \mathrm{~m} / \mathrm{sec}^{2}$
(2) $19.6 \mathrm{~m} / \mathrm{sec}^{2}$
(3) $9.8 \mathrm{~m} / \mathrm{sec}^{2}$
(4) $4.9 \mathrm{~m} / \mathrm{sec}^{2}$
Q. 16 A satellite of mass m moves around the earth along a circular path of radius r. Let m_{e} is the mass of the earth and R_{e} is its radius. The linear speed of the satellite depends upon-
(1) m_{e} and r
(2) m_{e} only
(3) r only
(4) m, R_{e} and r
Q. 17 If the radius of earth is reduced by 2% keeping its mass constant, then the weight of the body on its surface will-
(1) increase
(2) decrease
(3) remain same
(4) either (2) or (3)
Q. 18 An earth's satellite is moving in a circular orbit with a uniform speed v. If the gravitational force of the earth suddenly disappears, the satellite will-
(1) vanish into outer space
(2) continue to move with velocity v in original orbit
(3) fall down with increasing velocity
(4) fly off tangentially from the orbit with velocity v
Q. 19 The distance of a geostationary satellite from the centre of earth (radius $R=6400 \mathrm{~km}$) is nearly-
(1) 18 R
(2) 10 R
(3) 7 R
(4) 5 R
Q. 20 The maximum and minimum distances of a comet from the sun are $8 \times 10^{12} \mathrm{~m}$ and $1.6 \times 10^{12} \mathrm{~m}$ respecting. If its velocity when it is nearest to the sun is $60 \mathrm{~m} / \mathrm{sec}$ then what will be its velocity in m / s when it is farthest ?
(1) 12
(2) 60
(3) 112
(4) 6
Q. 21 The gravitational potential energy of a body at a distance r from the centre of the earth is U. The force at that point is-
(1) $\frac{U}{r^{2}}$
(2) $\frac{U}{r}$
(3) Ur
(4) $U r^{2}$
Q. 22 If the spinning speed of the earth is increased, then the weight of the body at the equator-
(1) does not change
(2) doubles
(3) decreases
(4) increases

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector-22, Nerul (W), Navi Mumbai - 400706.
Q. 23 When the radius of earth is reduced by 1% without changing the mass, then the acceleration due to gravity will-
(1) increase by 2%
(2) decrease by 1.5%
(3) increase by 1%
(4) decrease by 1%
Q. 24 A particle falls from infinity to the earth. Its velocity on reaching the earth surface is-
(1) 2 Rg
(2) Rg
(3) $\sqrt{\mathrm{Rg}}$
(4) $\sqrt{2 \mathrm{Rg}}$
Q. 25 Weight of a body of mass m decreases by 1% when it is raised to height h above the earth's surface. If the body is taken to a depth h in a mine, then in its weight will-
(1) decrease by 0.5%
(2) decrease by 2%
(3) increase by 0.5%
(4) increase by 1%
Q. 26 The escape velocity from the earth is $11.2 \mathrm{~km} / \mathrm{sec}$. The mass of another planet is 100 times of mass of earth and its radius is 4 times the radius of earth. The escape velocity for the planet is-
(1) $56.0 \mathrm{~km} / \mathrm{sec}$
(2) $280 \mathrm{~km} / \mathrm{sec}$
(3) $112 \mathrm{~km} / \mathrm{sec}$
(4) $11.2 \mathrm{~km} / \mathrm{sec}$
Q. 27 Acceleration due to gravity at earth's surface is ' g ' $\mathrm{m} / \mathrm{s}^{2}$. Find the effective value of acceleration due to gravity at a height of 32 km from sea level- $\left(R_{e}=6400 \mathrm{~km}\right)$
(1) $0.5 \mathrm{~g} \mathrm{~m} / \mathrm{s}^{2}$
(2) $0.99 \mathrm{~g} \mathrm{~m} / \mathrm{s}^{2}$
(3) $1.01 \mathrm{~g} \mathrm{~m} / \mathrm{s}^{2}$
(4) $0.90 \mathrm{~g} \mathrm{~m} / \mathrm{s}^{2}$
Q. 28 Near the earth's surface time period of a satellite is 1.4 hrs . Find its time period if it is at the distance ' $4 \mathrm{R}^{\prime}$ from the centre of earth.
(1) 32 hrs .
(2) $\left(\frac{1}{8 \sqrt{2}}\right) \mathrm{hrs}$.
(3) $8 \sqrt{2} \mathrm{hrs}$.
(4) 16 hrs .
Q. 29 The mass of the moon is 1% of mass of the earth. The ratio of gravitational pull of earth on moon to that of moon on earth will be-
(1) $1: 1$
(2) $1: 10$
(3) $1: 100$
(4) $2: 1$
Q. 30 A planet revolves around the sun in an elliptical orbit. If v_{p} and v_{a} are the velocities of the planet at the perigee and apogee respectively, then the eccentricity of the elliptical orbit is given by-
(1) $\frac{v_{p}}{v_{a}}$
(2) $\frac{v_{a}-v_{p}}{v_{a}+v_{p}}$
(3) $\frac{v_{p}+v_{a}}{v_{p}-v_{a}}$
(4) $\frac{v_{p}-v_{a}}{v_{p}+v_{a}}$

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	C	B	D	A	A	B	C	A	C	A
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	C	B	D	A	A	D	B	C	D	D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	B	D	C	C	A	A	C	B	A	B

