

Daily Practice Problems

NEET PHYSICS

Topic: Gravitation

- Q.1 There is no atmosphere on moon because-
 - (1) The root mean square velocity of atoms is more than escape velocity
 - (2) The root mean square velocity of atoms is less than escape velocity
 - (3) There is no oxygen
 - (4) None of the above
- Q.2 If the radius of earth shrinks by 1% maintaining its mass, then 'g' at the earth surface will-
 - (1) Decrease
 - (2) Increase
 - (3) Remain same
 - (4) Increase or decrease
- **Q.3** If R is the average radius of earth, ω is its angular velocity about its axis and g is the gravitational acceleration on the surface of earth then the cube of the radius of orbit of a geostationary satellite will be equal to-

(1)
$$\frac{R^2g}{\omega}$$
 (2) $\frac{R^2\omega^2}{g}$
(3) $\frac{Rg}{\omega^2}$ (4) $\frac{R^2g}{\omega^2}$

- Q.4 If the radius of a planet becomes half, where as its mass remains unchanged, then g becomes-
 - (1) Half (2) Doubled
 - (3) Unchanged (4) Four times

www.aggarwaleducare.com

- Q.5 Orbital radius of a satellite S of earth is four times that of a communication satellite C. Period of revolution of S is-
 - (1) 4 days
 (2) 8 days
 (3) 16 days
 (4) 32 days
- Q.6 A missile is launched with a velocity less than the escape velocity. Sum of its kinetic energy and potential energy is-
 - (1) Positive
 - (2) Negative
 - (3) May be negative or positive depending upon its initial velocity

(4) Zero

- **Q.7** Time period of a satellite revolving round a planet in an orbit of radius R is T. Periodic time of a satellite moving in an orbit of radius 9R will be-
 - (1) 27 T (2) 81 T
 - (3) 729 T (4) 3 T
- Q.8 More amount of sugar is obtained in 1kg weight-
 - (1) At north pole
 - (2) At equator
 - (3) Between pole and equator
 - (4) At south pole
- Q.9 If a satellite is revolving very close to the surface of earth, then its orbital velocity does not depend upon-
 - (1) Mass of satellite (2) Mass of earth
 - (3) Radius of earth (4) Orbital radius
- **Q.10** If the escape velocity from the surface of earth is v_e and velocity of a satellite revolving near the surface of earth is v then-

(1)
$$v = \sqrt{2} v_e$$
 (2) $v_e = 2v$

www.aggarwaleducare.com

(3)
$$v_e \approx \sqrt{2v}$$
 (4) $v_e \approx \sqrt{2}v$

- **Q.11** Two identical satellites are at the heights R and 7R from the earth's surface. Then which of the following statement is incorrect- (R = radius of the earth)
 - (1) Ratio of total energy of both is 5
 - (2) Ratio of kinetic energy of both is 4
 - (3) Ratio of potential energy of both 4
 - (4) Ratio of total energy of both is 4
- **Q.12** Imagine a body revolving around a big star in a circular orbit of radius R with time period T. If the force of attraction between star and the body is proportional to R^{-5/2}, then T² will be proportional to-

(1) R^3 (2) $R^{7/2}$ (3) $R^{3/2}$ (4) $R^{3.75}$

- **Q.13** The minimum projection velocity of a body from the earth's surface so that it becomes the satellite of the earth $(R_e = 6.4 \times 10^6 \text{ m})$
 - (1) 11×10^3 m/s (2) 8×10^3 m/s
 - (3) 6.4×10^3 m/s (4) 4×10^3 m/s
- Q.14 Geostationary satellite-
 - (1) is situated at a great height above the surface of earth
 - (2) moves in equatorial plane
 - (3) have time period of 24 hours
 - (4) have time period of 24 hours and moves in equatorial plane
- Q.15 A planet whose mass and radius are both half of that of earth consists of a satellite. Acceleration due to gravity (g) at its surface should be-
 - (1) 29.4 m/sec² (2) 19.6 m/sec²
 - (3) 9.8 m/sec² (4) 4.9 m/sec²
- **Q.16** A satellite of mass m moves around the earth along a circular path of radius r. Let m_e is the mass of the earth and R_e is its radius. The linear speed of the satellite depends upon-

(1) m_e and r (2) m_e only

www.aggarwaleducare.com

(3) r only (4) m, R_e and r

Q.17 If the radius of earth is reduced by 2% keeping its mass constant, then the weight of the body on its surface will-

- (1) increase(2) decrease(3) remain same(4) either (2) or (3)
- **Q.18** An earth's satellite is moving in a circular orbit with a uniform speed v. If the gravitational force of the earth suddenly disappears, the satellite will-
 - (1) vanish into outer space
 - (2) continue to move with velocity v in original orbit
 - (3) fall down with increasing velocity
 - (4) fly off tangentially from the orbit with velocity v
- Q.19 The distance of a geostationary satellite from the centre of earth (radius R = 6400 km) is nearly-
 - (1) 18 R (2) 10 R (3) 7 R (4) 5 R
- **Q.20** The maximum and minimum distances of a comet from the sun are 8×10^{12} m and 1.6×10^{12} m respecting. If its velocity when it is nearest to the sun is 60 m/sec then what will be its velocity in m/s when it is farthest?
 - (1) 12 (2) 60 (3) 112 (4) 6
- **Q.21** The gravitational potential energy of a body at a distance r from the centre of the earth is U. The force at that point is-

(1) $\frac{U}{r^2}$	(2) $\frac{U}{r}$				
(3) Ur	(4) Ur ²				

- Q.22 If the spinning speed of the earth is increased, then the weight of the body at the equator-
 - (1) does not change
 - (2) doubles
 - (3) decreases
 - (4) increases

Q.23 When the radius of earth is reduced by 1% without changing the mass, then the acceleration due to gravity will-

- (1) increase by 2%
- (2) decrease by 1.5%
- (3) increase by 1%
- (4) decrease by 1%
- Q.24 A particle falls from infinity to the earth. Its velocity on reaching the earth surface is-
 - (1) 2Rg (2) Rg
 - (3) $\sqrt{\text{Rg}}$ (4) $\sqrt{2\text{Rg}}$
- **Q.25** Weight of a body of mass m decreases by 1% when it is raised to height h above the earth's surface. If the body is taken to a depth h in a mine, then in its weight will-

(1) decrease by 0.5% (2) decrease by 2%

- (3) increase by 0.5% (4) increase by 1%
- **Q.26** The escape velocity from the earth is 11.2 km/sec. The mass of another planet is 100 times of mass of earth and its radius is 4 times the radius of earth. The escape velocity for the planet is-
 - (1) 56.0 km/sec (2) 280 km/sec
 - (3) 112 km/sec (4) 11.2 km/sec
- **Q.27** Acceleration due to gravity at earth's surface is 'g' m/s². Find the effective value of acceleration due to gravity at a height of 32 km from sea level- ($R_e = 6400$ km)

(1) 0.5 g m/s² (2) 0.99 g m/s²

- (3) 1.01 g m/s^2 (4) 0.90 g m/s^2
- **Q.28** Near the earth's surface time period of a satellite is 1.4 hrs. Find its time period if it is at the distance '4R' from the centre of earth.

(1) 32 hrs. (2)
$$\left(\frac{1}{8\sqrt{2}}\right)$$
 hrs.

(3) $8\sqrt{2}$ hrs. (4) 16 hrs.

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

Q.29 The mass of the moon is 1% of mass of the earth. The ratio of gravitational pull of earth on moon to that of moon on earth will be-

(1) 1 : 1	(2) 1 : 10
(3) 1 : 100	(4) 2 : 1

Q.30 A planet revolves around the sun in an elliptical orbit. If v_p and v_a are the velocities of the planet at the perigee and apogee respectively, then the eccentricity of the elliptical orbit is given by-

(1)
$$\frac{v_p}{v_a}$$
 (2) $\frac{v_a - v_p}{v_a + v_p}$
(3) $\frac{v_p + v_a}{v_p - v_a}$ (4) $\frac{v_p - v_a}{v_p + v_a}$

 $v_{p} + v$

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	с	В	D	А	A	В	с	A	с	А
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	с	В	D	А	A	D	В	С	D	D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	В	D	с	с	А	А	с	В	А	В

A Division of Aggarwal Educare CLASSES

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.