Daily Practice Problems

JEE MATHEMATICS

Topic: Ellipse

Q. 1 The equation to the ellipse (referred to its axes as the axes of x and y respectively) whose foci are $(\pm 2,0)$ and eccentricity $1 / 2$, is-
(A) $\frac{x^{2}}{12}+\frac{y^{2}}{16}=1$
(B) $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$
(C) $\frac{x^{2}}{16}+\frac{y^{2}}{8}=1$
(D) None of these
Q. 2 The eccentricity of the ellipse
$9 x^{2}+5 y^{2}-30 y=0$ is-
(A) $1 / 3$
(B) $2 / 3$
(C) $3 / 4$
(D) None of these
Q. 3 If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is-
(A) $3 / 2$
(B) $\sqrt{3} / 2$
(C) $2 / 3$
(D) $\sqrt{2} / 3$
Q. 4 If distance between the directrices be thrice the distance between the foci, then eccentricity of ellipse is-
(A) $1 / 2$
(B) $2 / 3$
(C) $1 / \sqrt{3}$
(D) $4 / 5$
Q. 5 The equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents an ellipse if-
(A) $\Delta=0, h^{2}<a b$
(B) $\Delta \neq 0, h^{2}<a b$
(C) $\Delta \neq 0, h^{2}>a b$
(D) $\Delta \neq 0, h^{2}=a b$
Q. 6 Equation of the ellipse whose focus is (6, 7) directrix is $x+y+2=0$ and $e=1 / \sqrt{ } 3$ is-
(A) $5 x^{2}+2 x y+5 y^{2}-76 x-88 y+506=0$
(B) $5 x^{2}-2 x y+5 y^{2}-76 x-88 y+506=0$
(C) $5 x^{2}-2 x y+5 y^{2}+76 x+88 y-506=0$
(D) None of these
Q. 7 The eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose latus rectum is half of its major axis is-
(A) $\frac{1}{\sqrt{2}}$
(B) $\sqrt{\frac{2}{3}}$
(C) $\frac{\sqrt{3}}{2}$
(D) None of these
Q. 8 The equation of the ellipse whose centre is at origin and which passes through the points $(-3,1)$ and $(2,-2)$ is-
(A) $5 x^{2}+3 y^{2}=32$
(B) $3 x^{2}+5 y^{2}=32$
(C) $5 x^{2}-3 y^{2}=32$
(D) $3 x^{2}+5 y^{2}+32=0$
Q. 9 The equation of the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point $(-3,1)$ and has eccentricity $\sqrt{\frac{2}{5}}$, is-
(A) $3 x^{2}+6 y^{2}=33$
(B) $5 x^{2}+3 y^{2}=48$
(C) $3 x^{2}+5 y^{2}-32=0$
(D) None of these
Q. 10 Latus rectum of ellipse
$4 x^{2}+9 y^{2}-8 x-36 y+4=0$ is-
(A) $8 / 3$
(B) $4 / 3$
(C) $\frac{\sqrt{5}}{3}$
(D) $16 / 3$
Q. 11 The latus rectum of an ellipse is 10 and the minor axis is equal to the distance between the foci. The equation of the ellipse is-
(A) $x^{2}+2 y^{2}=100$
(B) $x^{2}+\sqrt{2} y^{2}=10$
(C) $x^{2}-2 y^{2}=100$
(D) None of these
Q. 12 If the distance between the foci of an ellipse be equal to its minor axis, then its eccentricity is-
(A) $1 / 2$
(B) $1 / \sqrt{2}$
(C) $1 / 3$
(D) $1 / \sqrt{3}$
Q. 13 The equation $2 x^{2}+3 y^{2}=30$ represents-
(A) A circle
(B) An ellipse
(C) A hyperbola
(D) A parabola
Q. 14 The equation of the ellipse whose centre is $(2,-3)$, one of the foci is $(3,-3)$ and the corresponding vertex is $(4,-3)$ is-
(A) $\frac{(x-2)^{2}}{3}+\frac{(y+3)^{2}}{4}=1$
(B) $\frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{3}=1$
(C) $\frac{x^{2}}{3}+\frac{y^{2}}{4}=1$
(D) None of these
Q. 15 Eccentricity of the ellipse
$4 x^{2}+y^{2}-8 x+2 y+1=0$ is-
(A) $1 / \sqrt{ } 3$
(B) $\sqrt{ } 3 / 2$
(C) $1 / 2$
(D) None of these
Q. 16 The equation of ellipse whose distance between the foci is equal to 8 and distance between the directrix is 18 , is-
(A) $5 x^{2}-9 y^{2}=180$
(B) $9 x^{2}+5 y^{2}=180$
(C) $x^{2}+9 y^{2}=180$
(D) $5 x^{2}+9 y^{2}=180$
Q. 17 In an ellipse the distance between its foci is 6 and its minor axis is 8 . Then its eccentricity is-
(A) $\frac{4}{5}$
(B) $\frac{1}{\sqrt{52}}$
(C) $\frac{3}{5}$
(D) $\frac{1}{2}$
Q. 18 The eccentricity of an ellipse is $2 / 3$, latus rectum is 5 and centre is $(0,0)$. The equation of the ellipse is-
(A) $\frac{x^{2}}{81}+\frac{y^{2}}{45}=1$
(B) $\frac{4 x^{2}}{81}+\frac{4 y^{2}}{45}=1$
(C) $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$
(D) $\frac{x^{2}}{81}+\frac{y^{2}}{45}=5$
Q. 19 The length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{49}=1$ is -
(A) 98/6
(B) $72 / 7$
(C) $72 / 14$
(D) $98 / 12$
Q. 20 For the ellipse $\frac{x^{2}}{64}+\frac{y^{2}}{28}=1$, the eccentricity is
(A) $\frac{3}{4}$
(B) $\frac{4}{3}$
(C) $\frac{2}{\sqrt{7}}$
(D) $\frac{1}{3}$
Q. 21 The equation of the ellipse whose one of the vertices is $(0,7)$ and the corresponding directrix is $y=12$, is-
(A) $95 x^{2}+144 y^{2}=4655$
(B) $144 x^{2}+95 y^{2}=4655$
(C) $95 x^{2}+144 y^{2}=13680$
(D) None of these
Q. 22 The foci of the ellipse,
$25(x+1)^{2}+9(y+2)^{2}=225$, are at-
(A) $(-1,2)$ and $(-1,-6)$
(B) $(-2,1)$ and $(-2,6)$
(C) $(-1,-2)$ and $(-2,-1)$
(D) $(-1,-2)$ and $(-1,-6)$
Q. 23 The eccentricity of the ellipse represented by the equation $25 x^{2}+16 y^{2}-150 x-175=0$ is -
(A) $2 / 5$
(B) $3 / 5$
(C) $4 / 5$
(D) None of these
Q. 24 The equation of the ellipse whose foci are $(\pm 5,0)$ and one of its directrix is $5 x=36$, is -
(A) $\frac{x^{2}}{36}+\frac{y^{2}}{11}=1$
(B) $\frac{x^{2}}{6}+\frac{y^{2}}{\sqrt{11}}=1$
(C) $\frac{x^{2}}{6}+\frac{y^{2}}{11}=1$
(D) None of these
Q. 25 If S and S^{\prime} are two foci of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a<b)$ and $P\left(x_{1}, y_{1}\right)$ a point on it, then $S P+S^{\prime} P$ is equal to-
(A) 2 a
(B) 2 b
(C) $a+e x_{1}$
(D) $b+e y_{1}$
Q. 26 Let P be a variable point on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ with foci S and S^{\prime}. If A be the area of triangle $P S S^{\prime}$, then maximum value of A is-
(A) 12 sq. units
(B) 24 sq. units
(C) 36 sq. units
(D) 48 sq. units
Q. 27 The parametric representation of a point on the ellipse whose foci are $(-1,0)$ and $(7,0)$ and eccentricity $1 / 2$ is-
(A) $(3+8 \cos \theta, 4 \sqrt{3} \sin \theta)$
(B) $(8 \cos \theta, 4 \sqrt{3} \sin \theta)$
(C) $(3+4 \sqrt{3} \cos \theta, 8 \sin \theta)$
(D) None of these
Q. 28 The position of the point $(4,-3)$ with respect to the ellipse $2 x^{2}+5 y^{2}=20$ is-
(A) outside the ellipse
(B) on the ellipse
(C) on the major axis
(D) None of these
Q. 29 If $\frac{x}{a}+\frac{y}{b}=\sqrt{2}$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then its eccentric angle θ is equal to-
(A) 0
(B) 900
(C) 450
(D) 600
Q. 30 Find the equation of the tangent to the ellipse $x^{2}+2 y^{2}=4$ at the points where ordinate is 1.
(A) $x+\sqrt{2} y-2 \sqrt{2}=0 \& x-\sqrt{2} y+2 \sqrt{2}=0$
(B) $x-\sqrt{2} y-2 \sqrt{2}=0 \& x-\sqrt{2} y+2 \sqrt{2}=0$
(C) $x+\sqrt{2} y+2 \sqrt{2}=0 \& x+\sqrt{2} y+2 \sqrt{2}=0$
(D) None of these

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	B	B	B	C	B	B	A	B	C	A
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	A	B	B	B	B	D	C	B	B	A
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	B	A	B	A	B	A	A	A	C	A

