JEE MATHEMATICS

Topic: Ellipse

Q.1 The equation to the ellipse (referred to its axes as the axes of x and y respectively) whose foci are (± 2, 0) and eccentricity 1/2, is-

TM

(A)
$$\frac{x^2}{12} + \frac{y^2}{16} = 1$$
 (B) $\frac{x^2}{16} + \frac{y^2}{12} = 1$

(B)
$$\frac{x^2}{16} + \frac{y^2}{12} = 1$$

(C)
$$\frac{x^2}{16} + \frac{y^2}{8} = 1$$
 (D) None of these

- **Q.2** The eccentricity of the ellipse

$$9x^2 + 5y^2 - 30 y = 0$$
 is-

- (A) 1/3
- (B) 2/3
- (C) 3/4
- (D) None of these
- If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is-**Q.3**
 - (A) 3/2
- (B) $\sqrt{3}/2$
- (C) 2/3
- (D) $\sqrt{2}/3$
- If distance between the directrices be thrice the distance between the foci, then eccentricity of ellipse **Q.4** is-
 - (A) 1/2
- (B) 2/3
- (C) $1/\sqrt{3}$
- (D) 4/5

- The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents an ellipse if-Q.5
 - (A) $\Delta = 0$, $h^2 < ab$
- (B) $\Delta \neq 0$, h² < ab
- (C) $\Delta \neq 0$. $h^2 > ab$ (D) $\Delta \neq 0$. $h^2 = ab$
- Equation of the ellipse whose focus is (6, 7) directrix is x + y + 2 = 0 and $e = 1/\sqrt{3}$ is-**Q.6**
 - (A) $5x^2 + 2xy + 5y^2 76x 88y + 506 = 0$
 - (B) $5x^2 2xy + 5y^2 76x 88y + 506 = 0$
 - (C) $5x^2 2xy + 5y^2 + 76x + 88y 506 = 0$
 - (D) None of these
- The eccentricity of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose latus rectum is half of its major axis is-Q.7
 - (A) $\frac{1}{\sqrt{2}}$
- (B) $\sqrt{\frac{2}{3}}$
- (C) $\frac{\sqrt{3}}{2}$
- (D) None of these
- The equation of the ellipse whose centre is at origin and which passes through the points (-3,1) and Q.8 (2,-2) is-
 - (A) $5x^2 + 3y^2 = 32$ (B) $3x^2 + 5y^2 = 32$

 - (C) $5x^2 3y^2 = 32$ (D) $3x^2 + 5y^2 + 32 = 0$
- The equation of the ellipse (referred to its axes as the axes of x and y respectively) which passes **Q.9** through the point (– 3, 1) and has eccentricity $\sqrt{\frac{2}{5}}$, is-
 - (A) $3x^2 + 6y^2 = 33$
- (B) $5x^2 + 3y^2 = 48$
- (C) $3x^2 + 5y^2 32 = 0$ (D) None of these

Q.10 Latus rectum of ellipse

$$4x^2 + 9y^2 - 8x - 36y + 4 = 0$$
 is-

- (A) 8/3
- (B) 4/3
- (C) $\frac{\sqrt{5}}{3}$
- (D) 16/3
- The latus rectum of an ellipse is 10 and the minor axis is equal to the distance between the foci. The Q.11 equation of the ellipse is-
 - (A) $x^2 + 2y^2 = 100$
- (B) $x^2 + \sqrt{2} y^2 = 10$
- (C) $x^2 2y^2 = 100$ (D) None of these
- If the distance between the foci of an ellipse be equal to its minor axis, then its eccentricity is-Q.12
 - (A) 1/2
- (B) $1/\sqrt{2}$
- (C) 1/3
- (D) $1/\sqrt{3}$
- The equation $2x^2 + 3y^2 = 30$ represents-Q.13
 - (A) A circle
- (B) An ellipse
- (C) A hyperbola
- (D) A parabola
- The equation of the ellipse whose centre is (2, -3), one of the foci is (3, -3) and the corresponding Q.14 vertex is (4, -3) is-

(A)
$$\frac{(x-2)^2}{3} + \frac{(y+3)^2}{4} = 1$$
 (B) $\frac{(x-2)^2}{4} + \frac{(y+3)^2}{3} = 1$

(B)
$$\frac{(x-2)^2}{4} + \frac{(y+3)^2}{3} = 1$$

(C)
$$\frac{x^2}{3} + \frac{y^2}{4} = 1$$

- (D) None of these
- Q.15 Eccentricity of the ellipse

$$4x^2 + y^2 - 8x + 2y + 1 = 0$$
 is-

- (A) $1/\sqrt{3}$ (B) $\sqrt{3}/2$
- (C) 1/2
- (D) None of these

- Q.16 The equation of ellipse whose distance between the foci is equal to 8 and distance between the directrix is 18, is-

 - (A) $5x^2 9y^2 = 180$ (B) $9x^2 + 5y^2 = 180$

 - (C) $x^2 + 9y^2 = 180$ (D) $5x^2 + 9y^2 = 180$
- In an ellipse the distance between its foci is 6 and its minor axis is 8. Then its eccentricity is-Q.17
 - (A) $\frac{4}{5}$
- (B) $\frac{1}{\sqrt{52}}$
- (C) $\frac{3}{5}$ (D) $\frac{1}{2}$
- The eccentricity of an ellipse is 2/3, latus rectum is 5 and centre is (0, 0). The equation of the ellipse is-Q.18

 - (A) $\frac{x^2}{81} + \frac{y^2}{45} = 1$ (B) $\frac{4x^2}{81} + \frac{4y^2}{45} = 1$
 - (C) $\frac{x^2}{9} + \frac{y^2}{5} = 1$ (D) $\frac{x^2}{81} + \frac{y^2}{45} = 5$
- The length of the latus rectum of the ellipse $\frac{x^2}{36} + \frac{y^2}{49} = 1$ is -
 - (A) 98/6
- (B) 72/7
- (C) 72/14 (D) 98/12
- **Q.20** For the ellipse $\frac{x^2}{64} + \frac{y^2}{28} = 1$, the eccentricity is

 - (A) $\frac{3}{4}$ (B) $\frac{4}{3}$
 - (C) $\frac{2}{\sqrt{7}}$ (D) $\frac{1}{3}$

Q.21 The equation of the ellipse whose one of the vertices is (0, 7) and the corresponding directrix is y = 12, is-

(A)
$$95x^2 + 144y^2 = 4655$$

(B)
$$144x^2 + 95y^2 = 4655$$

(C)
$$95x^2 + 144y^2 = 13680$$

- (D) None of these
- Q.22 The foci of the ellipse,

$$25(x + 1)^2 + 9(y + 2)^2 = 225$$
, are at-

(A)
$$(-1, 2)$$
 and $(-1, -6)$

(C)
$$(-1, -2)$$
 and $(-2, -1)$

(D)
$$(-1, -2)$$
 and $(-1, -6)$

- The eccentricity of the ellipse represented by the equation $25x^2 + 16y^2 150x 175 = 0$ is -Q.23
 - (A) 2/5
- (B) 3/5
- (C) 4/5
- (D) None of these
- The equation of the ellipse whose foci are $(\pm 5, 0)$ and one of its directrix is 5x = 36, is -Q.24

 - (A) $\frac{x^2}{36} + \frac{y^2}{11} = 1$ (B) $\frac{x^2}{6} + \frac{y^2}{\sqrt{11}} = 1$

 - (C) $\frac{x^2}{6} + \frac{y^2}{11} = 1$ (D) None of these
- If S and S' are two foci of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a < b) and P (x₁, y₁) a point on it, then SP + S' P is Q.25 equal to-
 - (A) 2a
- (B) 2b
- (C) $a + ex_1$
- (D) $b + ey_1$

- Q.26 Let P be a variable point on the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ with foci S and S'. If A be the area of triangle PSS', then maximum value of A is—
 - (A) 12 sq. units (B) 24 sq. units
 - (C) 36 sq. units (D) 48 sq. units
- Q.27 The parametric representation of a point on the ellipse whose foci are (-1,0) and (7,0) and eccentricity 1/2 is-
 - (A) $(3 + 8 \cos \theta, 4\sqrt{3} \sin \theta)$
 - (B) (8 cos θ , 4 $\sqrt{3}$ sin θ)
 - (C) $(3 + 4\sqrt{3} \cos \theta, 8 \sin \theta)$
 - (D) None of these
- Q.28 The position of the point (4,-3) with respect to the ellipse $2x^2 + 5y^2 = 20$ is-
 - (A) outside the ellipse
 - (B) on the ellipse
 - (C) on the major axis
 - (D) None of these
- **Q.29** If $\frac{x}{a} + \frac{y}{b} = \sqrt{2}$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then its eccentric angle θ is equal to-
 - (A) 0
- (B) 90º
- (C) 45º
- (D) 60º
- **Q.30** Find the equation of the tangent to the ellipse $x^2 + 2y^2 = 4$ at the points where ordinate is 1.

(A)
$$x + \sqrt{2} y - 2\sqrt{2} = 0 & x - \sqrt{2} y + 2\sqrt{2} = 0$$

(B)
$$x - \sqrt{2} y - 2\sqrt{2} = 0 & x - \sqrt{2} y + 2\sqrt{2} = 0$$

(C)
$$x + \sqrt{2} y + 2\sqrt{2} = 0 & x + \sqrt{2} y + 2\sqrt{2} = 0$$

(D) None of these

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	В	В	С	В	В	А	В	С	Α
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	А	В	В	В	В	D	С	В	В	Α
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	В	А	В	Α	В	А	Α	А	С	А

Reg.Office: A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.