

Daily Practice Problems

NEET CHEMISTRY

Topic: Electrochemistry

- Q.1 In an electrolytic cell current flows from -
 - (1) Cathode to anode in outer circuit
 - (2) Anode to cathode outside the cell
 - (3) Cathode to anode inside the cell
 - (4) Anode to cathode inside the cell
- Q.2 In electrolysis of a fused salt, the weight deposited on an electrode will not depend on-
 - (1) Temperature
 - (2) Current intensity
 - (3) Electrochemical equivalent of ions
 - (4) Time for electrolysis

Q.3 If mercury is used as cathode in the electrolysis of aqueous NaCl solution,

- the ions discharged at cathode are-
 - $(1) H^{+}$
 - (2) Na⁺___
 - (3) OH
 - (4) Cl⁻

Q.4 Which of the following solutions has the highest equivalent conductance ?

- (1) 0.01M NaCl (2) 0.050 M NaCl
- (3) 0.005M NaCl
- (4) 0.02M NaCl
- Q.5 Three Faradays of electricity are passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and molten NaCl taken in three different electrolytic cells. The amount of Al, Cu and Na deposited at the cathodes will be in the ratio of-
 - (1) 1 mole : 2 mole : 3 mole
 - (2) 1 mole : 1.5 mole : 3 mole
 - (3) 3 mole : 2 mole : 1 mole
 - (4) 1 mole : 1.5 mole : 2 mole

Q.6 E° values of Mg²⁺ |Mg, Fe²⁺| Fe and Zn²⁺ | Zn are - 2.37 V, -0.44 V and -0.76 V respectively. The correct statement is -

- (1) Mg oxidises Fe
- (2) Zn oxidises Fe
- (3) Zn reduces Mg^{2+}
- (4) Zn reduces Fe^{2+}
- Q.7 The Zn acts as sacrificial or cathodic protection to prevent rusting of iron because -
 - (1) E^0_{OP} of Zn < E^0_{OP} of Fe
 - (2) E^0_{OP} of $Zn > E^0_{OP}$ of Fe
 - (3) E^0_{OP} of $Zn = E^0_{OP}$ of Fe
 - (4) Zn is cheaper than iron

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

Q.8 Number of faraday required to liberate 8g of H_2 is-(1) 8 (2) 16 (3) 4 (4) 2

- Q.9 Consider the following electrolytes
 a. AgNO₃
 b. CuSO₄
 c. AlCl₃
 d. Bi₂(SO₄)₃

 The quantity of electricity needed to electrolytes separately 1 M solutions of these electrolytes will be (F is faraday)
 (1) 1F, 2F, 3F, 6F
 (2) 2F, 3F, 6F, 1F
 (3) 3F, 6F, 2F, 1F
 (4) 6F, 3F, 2F, 1F
- Q.10 The electrode potential measures the -
 - (1) Tendency of the electrode to gain or lose electrons
 - (2) Tendency of a cell reaction to occur
 - (3) Difference in the ionisation potential of electrode and metal ion
 - (4) Current carried by an electrode
- Q.11 Point out the correct statement about Zn CuSO₄ cell
 - (1) The flow of electrons occurs from copper to zinc
 - (2) The value of E_{Red}^0 of copper electrode is less than that of zinc electrode.
 - (3) Zinc is anode while Cu is cathode electrode
 - (4) All the statements are correct
- Q.12 Which of the following KCl solution has lowest value of specific conductance-

(1) 1 M	(2) 0.1 M			
(3) 0.01 M	(4) 0.001 M			

Q.13 Which of the following KCl solution has value of equivalent conductance-

(1) 1 M	(2) 0.1 M		
(3) 0.01 M	(4) 0.001 N		

Q.14 If V, in the equation $\pi =$ sp. cond. \times V, is the volume in CC containing 1 equ. of the electrolyte;

V for a solution will be :	
(1) 10 c.c.	(2) 100 c.c.
(3) 1000 c.c.	(4) 10,000 c.c.

- Q.16The specific conductance of a salt of 0.01 M concentration is 1.061×10^{-4} .
Molar conductance of the same solution will be :
(1) 1.061×10^{-4} (2) 1.061
(3) 10.61 (4) 106.1
- Q.17 Which of the following solutions of NaCl will have highest specific conductance ? (1) 0.001 (2) 0.1 N (3) 0.01 N (4) 1.0 N

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

Q.18 The conductivity of a saturated solution of $BaSO_4$ is 3.06×10^{-6} ohm⁻¹ cm⁻¹ and

its molar conductance is 1.53 ohm⁻¹ cm⁻¹ mol⁻¹. The K_{sp} of BaSO₄ will be

(1) 4×10^{-12} (2) 2.5×10^{-9} (3) 2.5×10^{-13} (4) 4×10^{-6}

- Q.19 Which statement is not correct :
 - (1) Conductance of an electrolytic solution increases with dilution
 - (2) Conductance of an electrolytic solution decreases with dilution
 - (3) Specific conductance of an electrolytic solution decreases with dilution
 - (4) Equivalent conductance of an electrolytic solution increases with dilution
- Q.20 The resistance of 0.01 N solution of an electrolyte was found to be 210 ohm at 298 K using a conductivity cell of cell constant 0.66 cm^{-1} . The equivalent conductance of solution is :

(1) 314.28 mhocm² eq⁻¹ (2) 3.14 mho cm² eq⁻¹ (3) 314.28 mho⁻¹ cm² eq⁻¹

- (4) 3.14 mho⁻¹ cm² eq⁻¹
- Q.21 The molar conductance at infinite dilution of AgNO₃, AgCl and NaCl are 116.5, 121.6 and 110.3 respectively. The molar conductances of NaNO₃ is :

(1) 111.4	(2)105.2
(3) 130.6	(4)150.2

Q.22 The equivalent conductivity of 0.1 N CH_3 COOH at 25°C is 80 and at infinite dilution 400.

The degree of	dissociation of CH ₃ COOH is :
(1) 1	(2) 0.2
(3) 0.1	(4) 0.5

Q.23 The process in which chemical change occurs on passing electricity is termed :

(1) ionisation
 (2) neutralisation
 (3) electrolysis
 (4) hydrolysis

- Q.24 The amount of an ion discharged during electrolysis is not directly proportional to :
 - (1) resistance
 - (2) time
 - (3) current strength
 - (4) electrochemical equivalent of the element
- Q.25 Faraday's laws of electrolysis are related to the :
 - (1) atomic number of the cation
 - (2) equivalent weight of the anion
 - (3) equivalent weight of the electrolyte
 - (4) speed of the cation
- Q.26 Number of electrons involved in the electrodeposition of 63.5 gm. of Cu from a solution of $CuSO_4$ is :

 $\begin{array}{ll} (1) \ 6.022 \times 10^{23} \\ (3) \ 12.044 \times 10^{23} \\ \end{array} \qquad \begin{array}{ll} (2) \ 3.011 \times 10^{23} \\ (4) \ 6.022 \times 10^{22} \\ \end{array}$

- Q.27 When one coulomb of electricity is passed through an electrolytic solution the mass deposited on the electrode is equal to : (1) equivalent weight
 - (2) molecular weight
 - (3) electrochemical equivalent
 - (4) one gram

www.aggarwaleducare.com

Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.

- Q.28 When one Faraday of electric current is pass, the mass deposited is equal to :
 - (1) one gram equivalent
 - (2) one gram mole
 - (3) electrochemical equivalent
 - (4) half gram equivalent
- Q.29. On passing one Faraday of electricity through a dilute solution of an acid, the volume of hydrogen obtained at N.T.P. is : (1) 22400 ml. (2) 1120 ml.
 - (3) 2240 ml. (4) 11200 ml.
- Q.30 W g of copper deposited in a copper voltameter when an electric current of 2 ampere is passed for 2 hours. If one ampere of electric current is passed for 4 hours in the same voltameter, copper deposited will be :
 - (1) W (2) W/2
 - (3) W/4 (4) 2W

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	1	2	3	2	4	2	1	1	1
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	4	1	4	3	3	3	3	4	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	2	3	1	3	3	3	1	4	1

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.