Daily Practice Problems

MATHEMATICS

Topic: Differential Equation

Q. 1 A differential equation of first order and first degree is-
(A) $x\left(\frac{d y}{d x}\right)^{2}-x+a=0$
(B) $\frac{d^{2} y}{d x^{2}}+x y=0$
(C) $d y+d x=0$
(D) None of these
Q. 2 The order and degree of differential equation $\sqrt{1-y^{2}} d x+y \sqrt{1-x^{2}} d y=0$ are respectively-
(A) 1, 2
(B) 1, 1
(C) 2,1
(D) 2, 2
Q. 3 The order and degree of the differential equation $y=x \frac{d y}{d x}+\sqrt{a^{2}\left(\frac{d y}{d x}\right)^{2}+b^{2}}$ is-
(A) 1, 2
(B) 2, 1
(C) 1,1
(D) 2, 2
Q. 4 The order and degree of the differential equation $\left[4+\left(\frac{d y}{d x}\right)^{2}\right]^{2 / 3}=\frac{d^{2} y}{d x^{2}}$ are-
(A) 2, 2
(B) 3,3
(C) 2,3
(D) 3, 2
Q. 5 The order and the degree of differential equation $\frac{d^{4} y}{d x^{4}}-4 \frac{d^{3} y}{d x^{3}}+8 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+4 y=0$ are respectively-
(A) 4, 1
(B) 1, 4
(C) 1,1
(D) None of these
Q. 6 The order and degree of differential equation $\left(x y^{2}+x\right) d x+\left(y-x^{2} y\right) d y=0$ are-
(A) 1, 2
(B) 2,1
(C) 1,1
(D) 2,2
Q. 7 The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\sqrt{1+\left(\frac{d y}{d x}\right)^{3}}=0$ is -
(A) 1
(B) 2
(C) 3
(D) 6
Q. 8 The order of the differential equation whose solution is $y=a \cos x+b \sin x+c e^{-x}$ is-
(A) 3
(B) 2
(C) 1
(D) None of these
Q. 9 The differential equation of all circles of radius a is of order-
(A) 2
(B) 3
(C) 4
(D) None of these
Q. 10 The order of the differential equation of all circles of radius r, having centre on y-axis and passing through the origin is-
(A) 1
(B) 2
(C) 3
(D) 4
Q. 11 The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$ is-
(A) 1
(B) 2
(C) 3
(D) None of these
Q. 12 The differential equation
$x\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{4}+y=x^{2}$ is of -
(A) degree 2 and order 2
(B) degree 1 and order 1
(C) degree 4 and order 3
(D) degree 4 and order 4
Q. 13 Which of the following equation is linear?
(A) $\frac{d y}{d x}+x y^{2}=1$
(B) $x^{2} \frac{d y}{d x}+y=e^{x}$
(C) $\frac{d y}{d x}+3 y=x y^{2}$
(D) $x \frac{d y}{d x}+y^{2}=\sin x$
Q. 14 Which of the following equation is non- linear-
(A) $\frac{d y}{d x}=\cos x$
(B) $\frac{d^{2} y}{d x^{2}}+y=0$
(C) $d x+d y=0$
(D) $x \frac{d y}{d x}+\frac{3}{d y / d x}=y^{2}$
Q. 15 Which of the following equation is linear ?
(A) $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x^{2}\left(\frac{d y}{d x}\right)^{2}=0$
(B) $y=\frac{d y}{d x}+\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
(C) $\frac{d y}{d x}+\frac{y}{x}=\log x$
(D) $y \frac{d y}{d x}-4=x$
Q. $16 y=4 \sin 3 x$ is a solution of the differential equation-
(A) $\frac{d y}{d x}+8 y=0$
(B) $\frac{d y}{d x}-8 y=0$
(C) $\frac{d^{2} y}{d x^{2}}+9 y=0$
(D) $\frac{d^{2} y}{d x^{2}}-9 y=0$
Q. 17 The differential equation of the family of curves represented by the equation $x^{2}+y^{2}=a^{2}$ is-
(A) $x+y \frac{d y}{d x}=0$
(B) $y \frac{d y}{d x}=x$
(C) $y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
(D) None of these
Q. 18 The differential equation of the family of curves $y^{2}=4 a(x+a)$, where a is an arbitrary constant, is-
(A) $y\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=2 x \frac{d y}{d x}$
(B) $y\left[1-\left(\frac{d y}{d x}\right)^{2}\right]=2 x \frac{d y}{d x}$
(C) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0$
(D) $\left(\frac{d y}{d x}\right)^{3}+3 \frac{d y}{d x}+y=0$
Q. 19 The differential equation of all the non-vertical lines in the $x y$ - plane is-
(A) $\frac{d y}{d x}-x=0$
(B) $\frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$
(C) $\frac{d^{2} y}{d x^{2}}=0$
(D) $\frac{d^{2} y}{d x^{2}}+x=0$
Q. 20 The differential equation of the family of curves represented by the equation $(x-a)^{2}+y^{2}=a^{2}$ is-
(A) $2 x y \frac{d y}{d x}+x^{2}=y^{2}$
(B) $2 x y \frac{d y}{d x}+x^{2}+y^{2}=0$
(C) $x y \frac{d y}{d x}+x^{2}=y^{2}$
(D) None of these
Q. 21 The differential equation of all parabolas whose axes are parallel to y - axis is-
(A) $\frac{d^{3} y}{d x^{3}}=0$
(B) $\frac{d^{2} x}{d y^{2}}=c$
(C) $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} x}{d y^{2}}=0$
(D) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=c$
Q. 22 The differential equation of family of curve $y=A e^{x}+B e^{-x}$, where A and B are arbitrarily constants, is
(A) $\frac{d^{2} y}{d x^{2}}+y=0$
(B) $\frac{d^{2} y}{d x^{2}}=y$
(C) $y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}=0$
(D) None of these
Q. 23 The differential equation for the line $y=m x+c$ is (where c is arbitrary constant)-
(A) $\frac{d y}{d x}=m$
(B) $\frac{d y}{d x}+m=0$
(C) $\frac{d y}{d x}=0$
(D) None of these
Q. 24 The differential equation of the family of curves $v=\frac{A}{r}+B$, where $A \& B$ are arbitrary constants, is-
(A) $\frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dr}^{2}}+\frac{1}{\mathrm{r}} \frac{\mathrm{dv}}{\mathrm{dr}}=0$
(B) $\frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dr}^{2}}-\frac{2}{\mathrm{r}} \frac{\mathrm{dv}}{\mathrm{dr}}=0$
(C) $\frac{\mathrm{d}^{2} v}{\mathrm{dr}^{2}}+\frac{2}{\mathrm{r}} \frac{\mathrm{dv}}{\mathrm{dr}}=0$
(D) None of these
Q. 25 The general solution of the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}}$ is-
(A) $x^{3}-y^{3}=c$
(B) $x^{3}+y^{3}=c$
(C) $x^{2}+y^{2}=c$
(D) $x^{2}-y^{2}=c$
Q. 26 The general solution of the equation $\left(e^{У}+1\right) \cos x d x+e^{У} \sin x d y=0$ is-
(A) $\left(e^{Y}+1\right) \cos x=c$
(B) $\left(e^{Y}-1\right) \sin x=c$
(C) $\left(e^{Y}+1\right) \sin x=c$
(D) None of these
Q. 27 The solution of the differential equation $d y=\sec ^{2} x d x$ is-
(A) $y=\sec x \tan x+c$
(B) $y=2 \sec x+c$
(C) $y=\frac{1}{2} \tan x+c$
(D) None of these
Q. 28 The solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}=x$ is-
(A) $y=\tan ^{-1} x+c$
(B) $y=-\tan ^{-1} x+c$
(C) $y=\frac{1}{2} \log _{e}\left(1+x^{2}\right)+c$
(D) $y=-\frac{1}{2} \log e^{\left(1+x^{2}\right)+c}$
Q. 29 The solution of $\frac{d y}{d x}=e^{x}(\sin x+\cos x)$ is-
(A) $y=e^{x}(\sin x-\cos x)+c$
(B) $y=e^{x}(\cos x-\sin x)+c$
(C) $y=e^{x} \sin x+c$
(D) $y=e^{x} \cos x+c$
Q. 30 The solution of $\frac{d y}{d x}=x \log x$ is-
(A) $y=x^{2} \log x-\frac{x^{2}}{2}+c$
(B) $y=\frac{x^{2}}{2} \log x-x^{2}+c$
(C) $y=\frac{1}{2} x^{2}+\frac{1}{2} x^{2} \log x+c$
(D) None of these

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	C	B	A	C	A	C	B	A	A	A
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	A	B	D	C	C	A	B	C	A
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	A	B	A	C	A	C	D	C	C	D

