

- Q.1 A differential equation of first order and first degree is-
 - (A) $x \left(\frac{dy}{dx}\right)^2 x + a = 0$ (B) $\frac{d^2y}{dx^2} + xy = 0$
 - (C) dy + dx = 0

(D) None of these

Q.2 The order and degree of differential equation $\sqrt{1-y^2} dx + y \sqrt{1-x^2} dy = 0$ are respectively-

- (A) 1, 2 (B) 1, 1
- (C) 2, 1 (D) 2, 2

Q.3 The order and degree of the differential equation $y = x \frac{dy}{dx} + \sqrt{a^2 \left(\frac{dy}{dx}\right)^2 + b^2}$ is-

- (A) 1, 2 (B) 2, 1
- (C) 1, 1 (D) 2, 2

Q.4 The order and degree of the differential equation $\left[4 + \left(\frac{dy}{dx}\right)^2\right]^{2/3} = \frac{d^2y}{dx^2}$ are-

- (A) 2, 2 (B) 3, 3
- (C) 2, 3 (D) 3, 2

Q.5 The order and the degree of differential equation $\frac{d^4y}{dx^4} - 4\frac{d^3y}{dx^3} + 8\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 4y = 0$ are respectively-

- (A) 4, 1 (B) 1, 4
- (C) 1, 1 (D) None of these

Q.6 The order and degree of differential equation $(xy^2 + x) dx + (y - x^2 y) dy = 0$ are-

- (A) 1, 2 (B) 2, 1
- (C) 1, 1 (D) 2, 2

Q.7 The degree of the differential equation $\frac{d^2y}{dx^2} + \sqrt{1 + \left(\frac{dy}{dx}\right)^3} = 0$ is -

- (A) 1 (B) 2
- (C) 3 (D) 6

Q.8 The order of the differential equation whose solution is $y = a \cos x + b \sin x + ce^{-x}$ is-

- (A) 3 (B) 2
- (C) 1 (D) None of these
- Q.9 The differential equation of all circles of radius a is of order-
 - (A) 2 (B) 3
 - (C) 4 (D) None of these
- **Q.10** The order of the differential equation of all circles of radius r, having centre on y-axis and passing through the origin is-
 - (A) 1 (B) 2
 - (C) 3 (D) 4

Q.11 The degree of the differential equation $\frac{d^2y}{dx^2} + 3\left(\frac{dy}{dx}\right)^2 = x^2 \log\left(\frac{d^2y}{dx^2}\right)$ is-

- (A) 1 (B) 2
- (C) 3 (D) None of these
- Q.12 The differential equation

$$\mathbf{x}\left(\frac{\mathrm{d}^2\mathbf{y}}{\mathrm{dx}^2}\right)^2 + \left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^4 + \mathbf{y} = \mathbf{x}^2 \text{ is of } -$$

- (A) degree 2 and order 2
- (B) degree 1 and order 1
- (C) degree 4 and order 3
- (D) degree 4 and order 4
- Q.13 Which of the following equation is linear?

(A)
$$\frac{dy}{dx} + xy^2 = 1$$

(B) $x^2 \frac{dy}{dx} + y = e^x$
(C) $\frac{dy}{dx} + 3y = xy^2$
(D) $x \frac{dy}{dx} + y^2 = \sin^2 x^2$

Q.14 Which of the following equation is non-linear-

х

(A)
$$\frac{dy}{dx} = \cos x$$

(B) $\frac{d^2y}{dx^2} + y = 0$
(C) dx + dy = 0
(D) $x \frac{dy}{dx} + \frac{3}{dy/dx} = y^2$

www.aggarwaleducare.com

Q.15 Which of the following equation is linear ?

(A)
$$\left(\frac{d^2 y}{dx^2}\right)^2 + x^2 \left(\frac{dy}{dx}\right)^2 = 0$$

(B) $y = \frac{dy}{dx} + \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$
(C) $\frac{dy}{dx} + \frac{y}{x} = \log x$
(D) $y \frac{dy}{dx} - 4 = x$

Q.16 y = 4 sin 3x is a solution of the differential equation-

(A)
$$\frac{dy}{dx} + 8y = 0$$

(B) $\frac{dy}{dx} - 8y = 0$
(C) $\frac{d^2y}{dx^2} + 9y = 0$
(D) $\frac{d^2y}{dx^2} - 9y = 0$

- **Q.17** The differential equation of the family of curves represented by the equation $x^2 + y^2 = a^2$ is-
 - (A) $\mathbf{x} + \mathbf{y} \frac{dy}{dx} = 0$ (B) $\mathbf{y} \frac{dy}{dx} = \mathbf{x}$ (C) $\mathbf{y} \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$ (D) None of these

Q.18 The differential equation of the family of curves $y^2 = 4a (x + a)$, where a is an arbitrary constant, is-

(A)
$$y \left[1 + \left(\frac{dy}{dx} \right)^2 \right] = 2x \frac{dy}{dx}$$

(B) $y \left[1 - \left(\frac{dy}{dx} \right)^2 \right] = 2x \frac{dy}{dx}$
(C) $\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} = 0$

(D)
$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3$$
 + 3 $\frac{\mathrm{d}y}{\mathrm{d}x}$ + y = 0

www.aggarwaleducare.com

Q.19 The differential equation of all the non-vertical lines in the xy- plane is-

(A)
$$\frac{dy}{dx} - x = 0$$

(B) $\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$
(C) $\frac{d^2y}{dx^2} = 0$
(D) $\frac{d^2y}{dx^2} + x = 0$

Q.20 The differential equation of the family of curves represented by the equation $(x - a)^2 + y^2 = a^2$ is-

(A)
$$2xy \frac{dy}{dx} + x^2 = y^2$$

(B)
$$2xy\frac{dy}{dx} + x^2 + y^2 = 0$$

(C)
$$xy \frac{dy}{dx} + x^2 = y^2$$

- (D) None of these
- Q.21 The differential equation of all parabolas whose axes are parallel to y- axis is-

(A)
$$\frac{d^3y}{dx^3} = 0$$
 (B) $\frac{d^2x}{dy^2} = c$
(C) $\frac{d^3y}{dx^3} + \frac{d^2x}{dy^2} = 0$ (D) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$

Q.22 The differential equation of family of curve $y = Ae^{X} + Be^{-X}$, where A and B are arbitrarily constants, is

С

(A)
$$\frac{d^2y}{dx^2} + y = 0$$

(B)
$$\frac{d^2y}{dx^2} = y$$

(C)
$$\gamma \frac{d^2 y}{dx^2} - \left(\frac{dy}{dx}\right)^2 = 0$$

(D) None of these

www.aggarwaleducare.com

- Q.23 The differential equation for the line y = mx + c is (where c is arbitrary constant)-
 - (A) $\frac{dy}{dx} = m$ (B) $\frac{dy}{dx} + m = 0$ (C) $\frac{dy}{dx} = 0$ (D) None of these
- **Q.24** The differential equation of the family of curves $v = \frac{A}{r} + B$, where A & B are arbitrary constants, is-
 - (A) $\frac{d^2v}{dr^2} + \frac{1}{r} \frac{dv}{dr} = 0$

(B)
$$\frac{\mathrm{d}^2 \mathrm{v}}{\mathrm{d} \mathrm{r}^2} - \frac{2}{\mathrm{r}} \frac{\mathrm{d} \mathrm{v}}{\mathrm{d} \mathrm{r}} = 0$$

- (C) $\frac{d^2v}{dr^2} + \frac{2}{r} \frac{dv}{dr} = 0$
- (D) None of these
- **Q.25** The general solution of the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2}$ is-

(A) $x^3 - y^3 = c$	(B) $x^3 + y^3 = c$
(C) $x^2 + y^2 = c$	(D) $x^2 - y^2 = c$

- **Q.26** The general solution of the equation $(e^{y} + 1) \cos x \, dx + e^{y} \sin x \, dy = 0$ is-
 - (A) $(e^{y} + 1) \cos x = c$ (B) $(e^{y} 1) \sin x = c$ (C) $(e^{y} + 1) \sin x = c$ (D) None of these
- **Q.27** The solution of the differential equation $dy = \sec^2 x \, dx$ is-
 - (A) $y = \sec x \tan x + c$ (B) $y = 2 \sec x + c$ (C) $y = \frac{1}{2} \tan x + c$ (D) None of these

www.aggarwaleducare.com

Q.28 The solution of the differential equation

$$(1 + x^{2})\frac{dy}{dx} = x \text{ is-}$$
(A) y = tan⁻¹ x + c
(B) y = -tan⁻¹ x + c
(C) y = $\frac{1}{2} \log_{e} (1 + x^{2}) + c$
(D) y = $-\frac{1}{2} \log_{e} (1 + x^{2}) + c$

- **Q.29** The solution of $\frac{dy}{dx} = e^x (\sin x + \cos x)$ is-
 - (A) $y = e^{x} (\sin x \cos x) + c$
 - (B) $y = e^{x} (\cos x \sin x) + c$
 - (C) $y = e^{x} \sin x + c$
 - (D) $y = e^{x} \cos x + c$

Q.30 The solution of
$$\frac{dy}{dx} = x \log x$$
 is-
(A) $y = x^2 \log x - \frac{x^2}{2} + c$
(B) $y = \frac{x^2}{2} \log x - x^2 + c$
(C) $y = \frac{1}{2}x^2 + \frac{1}{2}x^2 \log x + c$

(D) None of these

CLASSES

www.aggarwaleducare.com

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	с	В	А	с	А	с	В	A	А	А
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	A	В	D	с	с	А	В	с	А
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	А	В	А	с	А	с	D	с	с	D

ANSWER KEY

