

Daily Practice Problems

MATHS

Topic - Determinants & Matrix

Q.1	Q.1 If $a^2 + b^2 + c^2 = 1$ then $ab + bc + ca$ lies in the interval :							
	(A) $\left[\frac{1}{2}, 2\right]$	(B) [-1,2]	(C) $\left[-\frac{1}{2},1\right]$	(D) $\left[-1,\frac{1}{2}\right]$				
Q.2	The value of the determ	ninant $\begin{vmatrix} a^2 & a \\ cos(nx) & cos(n+1) \\ sin(nx) & sin(n+1) \end{vmatrix}$	$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	ependent of :				
	(A) n	(B) a	(C) x	(D) a , n and x				
Q.3	A is an involutary matr	This given by A = $\begin{bmatrix} 0 & 1 \\ 4 & -3 \\ 3 & -3 \end{bmatrix}$	$\begin{bmatrix} -1\\ 3 & 4\\ 3 & 4 \end{bmatrix}$ then the inverse	of $\frac{A}{2}$ will be				
	(A) 2A	(B) $\frac{A^{-1}}{2}$	(C) $\frac{A}{2}$	(D) A ²				
Q.4	If $P(x) = ax^2 + bx + c$ (A) exactly one real ro (C) exactly three real r	& $Q(x) = -ax^2 + dx - bot$ roots	- c, where $ac \neq 0$, then $P(x) \cdot Q(x) = 0$ has (B) at least two real roots (D) all four are real roots.					
		1+a	1 1					
Q.5	If a, b, c are all differ	rent from zero & 1 1	$\begin{array}{c cc} 1+b & 1 \\ 1 & 1+c \end{array} = 0, \text{ then }$	the value of $a^{-1} + b^{-1} + c^{-1}$ is				
	(A) abc	(B) $a^{-1} b^{-1} c^{-1}$	(C) $-a-b-c$	(D) -1				
Q.6	If A and B are symmetric matrices, then ABA is							
	(A) symmetric matrix(C) diagonal matrix		(B) skew symmetric(D) scalar matrix					
Q.7	Let a > 0, b > 0 & c > (A) are real & negativ (C) are rational number	0 . Then both the roots e ers	 of the equation ax² + 1 (B) have negative real (D) none 	bx + c = 0 parts				

www.aggarwaleducare.com

Q.8	If α , $\beta \& \gamma$ are real n	umbers, then $D = \begin{vmatrix} \cos \theta \\ \cos \theta \end{vmatrix}$	$ \begin{array}{cccc} 1 & \cos(\beta - \alpha) & \cos(\beta - \alpha) \\ \sin(\alpha - \beta) & 1 & \cos(\beta - \gamma) \\ \sin(\alpha - \gamma) & \cos(\beta - \gamma) \end{array} $	$ \begin{vmatrix} s(\gamma - \alpha) \\ s(\gamma - \beta) \\ 1 \end{vmatrix} = $				
	(A) -1 (C) $\cos \alpha + \cos \beta + c$	cosγ	(B) $\cos \alpha \ \cos \beta \ \cos \gamma$ (D) zero					
Q.9	The real values of 'a' f roots of opposite signs	or which the quadratic s is given by :	e equation, $2x^2 - (a^3 + 8a - 1)x + a^2 - 4a = 0$ possesses					
	(A) a > 5	(B) $0 < a < 4$	(C) $a > 0$	(D) $a > 7$				
Q.10	If $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$, A^{-1} is given by						
	(A) – A	$(B)A^{T}$	$(C) - A^{T}$	(D)A				
Q.11	The minimum value of where $0 , is$	of the expression x – p	+ x - 15 + x - p - 15	5 for 'x' in the range $p \le x \le 15$				
	(A) 10	(B) 15	(C) 30	(D) 0				
Q.12	If the system of equat	ions $ax+y+z=0$, $x+1$	y + z = 0 & x + y + cz =	= 0 (a, b, $c \neq 1$) has a non-trivial				
	solution, then the val	ue of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-b}$	$\frac{1}{c}$ is :					
	(A) –1	(B) 0	(C) 1	(D) none of these				
Q.13	If a, b, c are real numbers satisfying the condition $a + b + c = 0$ then the roots of the quadratic equation $3ax^2 + 5bx + 7c = 0$ are : (A) positive (B) pegative (C) real & distinct (D) imaginary							
				(2)				
Q.14	Consider the matrices	$A = \begin{bmatrix} 4 & 6 & -1 \\ 3 & 0 & 2 \\ 1 & -2 & 5 \end{bmatrix}, B =$	$= \begin{bmatrix} 2 & 4 \\ 0 & 1 \\ -1 & 2 \end{bmatrix}, C = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, C$	Out of the given matrix products				
	 (i) (AB)^TC (A) exactly one is defined (C) exactly three are defined 	(ii) $C^{T}C(AB)^{T}$ ned lefined	 (iii) C^TAB and (iv) A^TABB^TC (B) exactly two are defined (D) all four are defined 					
Q.15	If the difference of the roots of the equation, $x^2 + ax + b = 0$ is equal to the difference of the roots of the equation $x^2 + bx + a = 0$ then :							
	(A) $a + b = 4$	(B) $a + b = -4$	(C) $a - b = 4$	(D) $a - b = -4$				
Q.16	The value of a for w ax+(a+1)y+(a+2)	which the system of equation $z = 0 \& x + y + z = 0$	ations ; $a^3x + (a+1)^3y$ has a non-zero solution	$+(a+2)^3 z=0$, on is :				
	(A) 1	(B) 0	(C) –1	(D) none of these				
Q.17	Suppose a, b, and c are is	positive numbers such th	hat $a+b+c=1$. Then the	e maximum value of $ab + bc + ca$				
	(A) $\frac{1}{3}$	(B) $\frac{1}{4}$	(C) $\frac{1}{2}$	(D) $\frac{2}{3}$				

www.aggarwaleducare.com

www.aggarwaleducare.com

Q.28	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfies	s the equation $x^2 - (a +$	d)x + k = 0, then	
	(A) k = bc	(B) $\mathbf{k} = \mathbf{ad}$	(C) $k = a^2 + b^2 + c^2 + c^2$	d^2 (D) ad-bc
Q.29	Let r_1, r_2 and r_3 be the $(r_1 + 2)(r_2 + 2)$	solutions of the equation $(r_2 + 2)$ is	$500 x^3 - 2x^2 + 4x + 5074 =$	=0 then the value of
	(A) 5050	(B) 5066	(C) – 5050	(D) – 5066
Q.30	If $a, b, c > 0 \& x, y, z$	$z \in R$, then the determ	inant $\begin{vmatrix} (a^{x} + a^{-x})^{2} & (a^{x} - b^{x})^{2} \\ (b^{y} + b^{-y})^{2} & (b^{y} - b^{y})^{2} \\ (c^{z} + c^{-z})^{2} & (c^{z} - b^{y})^{2} \end{vmatrix}$	$\left. \begin{array}{ccc} -a^{-x} \\ -b^{-y} \\ -b^{-y} \end{array} \right ^{2} & 1 \\ -c^{-z} \\ \end{array} = - $
	(A) $a^x b^y c^z$	(B) $a^{-x}b^{-y}c^{-z}$	(C) $a^{2x}b^{2y}c^{2z}$	(D) zero
Q.31	The sum of the roots (A) 3954	of the equation $(x + 1)$ (B) $\log_2 11$	$= 2 \log_2(2^{x} + 3) - 2 \log_4(C) \log_2 3954$	$(1980 - 2^{-x})$ is (D) indeterminate
Q.32	Identify the incorrect s product. (A) $t_r(A+B) = t_r(A) + (C) t_r(A^T) = t_r(A)$	statement in respect of t t _r (B)	two square matrices A at (B) $t_r(\alpha A) = \alpha t_r(A), \alpha$ (D) $t_r(AB) \neq t_r(BA)$	nd B conformable for sum and $\alpha \in R$
Q.33	If $a + b + c = 0 \& a^2$ (A) $3/2$	$+b^{2}+c^{2}=1$ then the (B) 3/4	value of $a^4 + b^4 + c^4$ is (C) 1/2	(D) 1/4
Q.34	The determinant $\begin{vmatrix} \cos (0) \\ \sin (0) \\ - \cos (0) \end{vmatrix}$	$(\theta + \phi) - \sin(\theta + \phi)$ co $n\theta$ cos θ si $os\theta$ sin θ co	s2φ nφ is : osφ	
	(A) 0(C) independent of \$\phi\$		(B) independent of θ(D) independent of θ	&φ both
Q.35	The equation whose ro (A) $2x^2 - x - 1 = 0$	bots are $\sec^2 \alpha \& \csc \alpha$ (B) $x^2 - 3x + 3 = 0$	$c^2 \alpha \text{ can be :}$ 0(C) $x^2 - 9x + 9 = 0$	(D) none
Q.36	If A and B are non sing (A) Adj. (A) (Adj. B) (C) Adj. A+ Adj. B	ular Matrices of same o	rder then Adj. (AB) is (B) (Adj. B) (Adj. A) (D) none of these	
Q.37	The graph of a quadrat y-axis is as shown in t INCORRECT? (A) Product of the roo (B) Discriminant of the (C) Nothing definite ca (D) Both roots of the quadratic	ic polynomial $y = ax^2 + be$ he figure. Then which the figure of the corresponding quadratic equation is ne n be said about the sum uadratic equation are pu	$bx + c$ (a, b, $c \in R$) with one of the following sta quadratic equation is po- gative. of the roots, whether po- rely imaginary.	vertex on tement is positive. y y y y y y y y

www.aggarwaleducare.com

Q.38	If	$\begin{vmatrix} a+1\\a+2\\a+3 \end{vmatrix}$	a+2a+3a+4	$\begin{vmatrix} a+p\\a+q\\a+r \end{vmatrix} = 0$), then p,	, q, r ar	e in :	
	(A) AP		(B) GP			(C) HP	(D) none	

Q.39 The number of solution of the equation $e^{2x} + e^x + e^{-2x} + e^{-x} = 3(e^{-2x} + e^x)$ is (A) 0 (B) 2 (C) 1 (D) more than 2

Q.40 Let $A = \begin{bmatrix} x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda \end{bmatrix}$, then A^{-1} exists if (A) $x \neq 0$ (B) $\lambda \neq 0$ (C) $3x + \lambda \neq 0, \lambda \neq 0$ (D) $x \neq 0, \lambda \neq 0$

Q.41 Let a, b, c be the three roots of the equation $x^3 + x^2 - 333x - 1002 = 0$ then the value of $a^3 + b^3 + c^3$. (A) 2006 (B) 2005 (C) 2003 (D) 2002

Q.42 For positive numbers x, y & z the numerical value of the determinant $\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix}$ is (A) 0 (B) 1 (C) 3 (D) none O.43 If K $\in R_0$ then det. {adj (KL_)} is equal to

Q.43 If $K \in \mathbb{R}_0$ then det. {adj (KI_n) } is equal to (A) K^{n-1} (B) $K^{n(n-1)}$ (C) K^n (D) K

Q.44 The number of real roots of the equation $\sqrt{x^2 + 1} - \sqrt{2x^2 + 5} = 1$ is (A) 4 (B) 2 (C) 1 (D) 0

Q.45 The determinant $\begin{vmatrix} b_1 + c_1 & c_1 + a_1 & a_1 + b_1 \\ b_2 + c_2 & c_2 + a_2 & a_2 + b_2 \\ b_3 + c_3 & c_3 + a_3 & a_3 + b_3 \end{vmatrix} =$ (A) $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ (B) $2\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ (C) $3\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ (D) $4\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

Q.46 Which of the following is an orthogonal matrix

(A) $\begin{bmatrix} 6/7 & 2/7 & -3/7 \\ 2/7 & 3/7 & 6/7 \\ 3/7 & -6/7 & 2/7 \end{bmatrix}$	(B) $\begin{bmatrix} 6/7 & 2/7 & 3/7 \\ 2/7 & -3/7 & 6/7 \\ 3/7 & 6/7 & -2/7 \end{bmatrix}$
(C) $\begin{bmatrix} -6/7 & -2/7 & -3/7 \\ 2/7 & 3/7 & 6/7 \\ -3/7 & 6/7 & 2/7 \end{bmatrix}$	(D) $\begin{bmatrix} 6/7 & -2/7 & 3/7 \\ 2/7 & 2/7 & -3/7 \\ -6/7 & 2/7 & 3/7 \end{bmatrix}$

www.aggarwaleducare.com

Q.47 Number of integral values of x satisfying the inequality

$$\left(\frac{3}{4}\right)^{6x+10-x^2} < \frac{27}{64}$$
 is

(A) 6 (B) 7 (C) 8 (D) infinite

Q.48 The determinant $\begin{vmatrix} 1+a+x & a+y & a+z \\ b+x & 1+b+y & b+z \\ c+x & c+y & 1+c+z \end{vmatrix} =$ (A) (1+a+b+c) (1+x+y+z) - 3 (ax+by+cz)(B) a (x+y) + b (y+z) + c (z+x) - (xy+yz+zx)(C) x (a+b) + y (b+c) + z (c+a) - (ab+bc+ca)(D) none of these

- Q.49 Which of the following statements is incorrect for a square matrix A. (|A| ≠ 0)
 (A) If A is a diagonal matrix, A⁻¹ will also be a diagonal matrix
 (B) If A is a symmetric matrix, A⁻¹ will also be a symmetric matrix
 (C) If A⁻¹ = A ⇒ A is an idempotent matrix
 - (D) If $A^{-1} = A \Rightarrow A$ is an involutary matrix
- Q.50 The set of real value(s) of p for which the equation, |2x+3| + |2x-3| = px+6 has more than two solutions is :
 - (A) (0,4] (B) (-4,4) (C) $R \{4,-4,0\}$ (D) $\{0\}$

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	C	Α	Α	В	D	Α	В	D	В	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	С	С	С	В	С	Α	Α	Α	С
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	С	D	С	D	С	D	Α	D	С	D
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	В	D	С	В	С	В	С	Α	С	С
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	Α	Α	В	D	В	Α	В	Α	С	D

Answer Key

www.aggarwaleducare.com