

Daily Practice Problems

NEET PHYSICS

Topic: Current electricity

- **Q.1** A current of 5 Amp exist on a 10 ohm resistance for 4 min. How much charge pass through any cross-section of the resistor in this time ?
 - (1) 12 coulombs (2) 120 coulombs
 - (3) 1200 coulombs (4) 12000 coulombs
- Q.2 The electric current in a liquid is due to the flow of -
 - (1) electron only
 - (2) positive ions only
 - (3) negative and positive ions both
 - (4) electrons and positive ions both
- Q.3 The electric current in a discharge tube containing a gas is due to -
 - (1) electron only
 - (2) positive ions only
 - (3) negative ion and positive ions both
 - (4) electrons and positive ions both
- Q.4 A steady current is passing through a linear conductor of non-uniform cross-section. The net quantity of charge crossing any cross-section per second is -
 - (1) independent of area of cross-section
 - (2) directly proportional to the length of conductor
 - (3) directly proportional to the area of cross-section
 - (4) inversely proportional to the lengths of conductor
- **Q.5** A current (I) flows through a uniform wire of diameter (d) when the mean drift velocity is v. The same current will flow through a wire of diameter d/2 made of the same material if the mean drift velocity of the electron is
 - (1) v/4 (2) v/2
 - (3) 4v (4) 2v

www.aggarwaleducare.com

- Q.6 A wire of non-uniform cross-section is carrying a steady current. Along the wire -
 - (1) current and current density are constant
 - (2) only current is constant
 - (3) only current density is constant
 - (4) neither current nor current density is a constant
- Q.7 When a potential difference (V) is applied across a conductor , the thermal speed of electrons is -
 - (1) zero (2) proportional to \sqrt{T}
 - (3) proportional to (T) 4) proportional to V
- Q.8 Specific resistance of a wire depends on the
 - (1) length of the wire
 - (2) area of cross-section of the wire
 - (3) resistance of the wire
 - (4) material of the wire
- **Q.9** A cross-sectional area of a copper wire is 3×10^{-6} m². The current of 4.2 amp is flowing through it. The current density in amp/m² through the wire is
 - (1) 1.4×10^3 (2) 1.4×10^4
 - (3) 1.4×10^5 (4) 1.4×10^6
- Q.10 The resistance of some substances become zero at very low temperature , then these substances are called
 - (1) good conductors (2) super conductors
 - (3) bad conductors (4) semi conductors
- **Q.11** The resistance of wire is 20Ω . The wire is stretched to three times its length. Then the resistance will now be
 - (1) 6.67Ω (2) 60Ω
 - (3) 120Ω (4) 180Ω
- **Q.12** The dimensions of a mangnin block are $1 \text{ cm} \times 1 \text{ cm} \times 100 \text{ cm}$. The electrical resistivity of mangnin is 4.4×10^{-7} ohm-meter. The resistance between the opposite rectangular faces is
 - (1) 4.4×10^{-7} ohm (2) 4.4×10^{-3} ohm
 - (3) 4.4×10^{-5} ohm (4) 4.4×10^{-1} ohm

- Q.13 If the temperatures of iron and silicon wires are increased from 30°C to 50°C, the correct statement is-
 - (1) resistance of both wires increase
 - (2) resistance of both wires decrease
 - (3) resistance of iron wire increases and the resistance of silicon wire decreases
 - (4) resistance of iron wire decreases and the resistance of silicon wire increases
- **Q.14** When the resistance of copper wire is 0.1Ω and the radius is 1 mm, then the length of the wire is

(specific resistance of copper is 3.14×10^{-8} ohm \times m) -

- (1) 10 cm (2) 10 m (3) 100 m (4) 100 cm
- **Q.15** When the resistance wire is passed through a die the cross–section area decreases by 1%, the change in resistance of the wire is -
 - (1) 1% decrease (2) 1% increase
 - (3) 2% decrease (4) 2% increase
- Q.16 In the following diagram two parallelepiped A and B are of the same thickness. The arm of B is double that of A.

Compare these resistances and find out the value of R_A/R_B is –

(1) 1 (2) 2 (3) $\frac{1}{2}$ (4) 4

- Q.17 When the temperature of a metallic conductor is increased its resistance -
 - (1) always decreases
 - (2) always increases
 - (3) may increase or decrease
 - (4) remains the same
- Q.18 The resistance of a semi-conductors -
 - (1) increases with increase of temperature
 - (2) decreases with increase of temperature
 - (3) does not charge with charge of temperature
 - (4) first decreases and then increases with increase of temperature
- Q.19 Ohm's law is valid when the temperature of the conductor is -
 - (1) constant (2) very high
 - (3) very low (4) varying

www.aggarwaleducare.com

Q.20 A certain piece of copper is to be shared into a conductor of minimum resistance . Its length and diameter should be respectively -

(1) ℓ , d (2) 2 ℓ , d

(3) $\ell/2$, 2d (4) 2 ℓ , d/2

Q.21 A wire has a resistance of 10Ω . A second wire of the same material is having length double and radius of cross-section half that of the wire. The resistance of the second wire is -

(1) 20Ω (2) 40Ω (3) 80Ω (4) 10Ω

Q.22 A cylindrical copper rod is reformed to twice its original length with no change in volume. The resistance between its ends before the change was (R). Now its resistance -

(1) 8R (2) 6R (3) 4R (4) 2R

- Q.23 The length of a conductor is halved. Its conductance will be -
 - (1) halved (2) unchanged
 - (3) doubled (4) quadrupled

(3) $\frac{R}{2}$

Q.24 Net resistance between X and Y is –

(1) R (2) 2R

(4) 4R

Q.25 Net resistance between X and Y is -

(4) 60 Ω

www.aggarwaleducare.com

Q.27 The equivalent resistance between the terminal point P and Q is 4Ω in the given circuit, then find out the resistance of R in ohms -

- **Q.28** At a point Σ = 0 in a circuit with one emf source, then-
 - (1) the resistance of the circuit is zero
 - (2) the point is the junction point
 - (3) the emf of the source is infinity
 - (4) this is not possible
- Q.29 For the following circuits, the potential difference between X and Y in volt is –

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	3	4	1	3	2	2	4	4	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	1	3	2	4	1	2	2	1	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	3	2	3	2	1	2	1	1