

Daily Practice Problems

NEET CHEMISTRY

Topic: Chemical Energetics

Q.1 A hypothetical reaction , A \rightarrow 2B, proceeds through following sequence of steps -

 $\mathsf{A} \rightarrow \mathsf{C}; \Delta \mathsf{H} = \mathsf{q}_1$

 $C \rightarrow D; \Delta H = q_2$

$$\frac{1}{2}$$
 D \rightarrow B; Δ H = q₃

The heat of reaction is :

- (A) $q_1 q_2 + 2q_3$ (B) $q_1 + q_2 2q_3$
- (C) $q_1 + q_2 + 2q_3$ (D) $q_1 + 2q_2 2q_3$
- Q.2 In a change from state A to state B -
 - (A) 'q' depends only on the initial and final state
 - (B) 'w' depends only on the initial and final state
 - (C) Δ E depends only on the initial and final state
 - (D) Δ E depends upon the path adopted by A to change into $\,$ B
- **Q.3** The heat of combustion of benzene determined in a bomb calorimeter is 870 K.cal. mol⁻¹ at 298 K.

The value of ΔE for the reaction is -

- (A) 1740 K . cal mol⁻¹
- (B) + 870 K . cal mol⁻¹
- (C) 870 K . cal mol⁻¹
- (D) + 1740 K . cal mol⁻¹

Q.4 How many kcal of heat is evolved by the complete neutralisation of one mole sulphuric acid with NaOH -

- (A) 13.7 kcal
- (B) 27.4 kcal
- (C) 6.85 kcal
- (D) None of the above
- **Q.5** The enthalpy of formation for C_2H_4 (g) , CO_2 (g) and H_2O (/) at 25°C and 1 atm pressure by 52,

– 394 and – 286 kJ mol⁻¹ respectively. The enthalpy of combustion of C_2H_4 (g) will be -

(A) + 1412 kJ mol⁻¹ (B) – 1412 kJ mol⁻¹

(C) + 141.2 kJ mol⁻¹ (D) – 141.2kJ mol⁻¹

www.aggarwaleducare.com

Q.6 X g of ethanal (CH₃CHO) was subjected to combustion in a bomb calorimeter and the heat produced is Y joules. Then which of following is correct -

(A)
$$\Delta E_{(comb.)} = -Y kJ$$

(B) $\Delta E_{(comb.)} = -\frac{44Y}{X} J mol^{-1}$
(C) $\Delta H_{(comb.)} = -\frac{44Y}{X} J mol^{-1}$
(D) $\Delta H_{(comb.)} = -Y J mol^{-1}$

Q.7 Latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is 10.00 kcal/mol. What will be the change in internal energy (ΔE) for 3 mol of liquid at same temperature-

(C) 27.0 kcal (D) – 27.0 kcal

Q.8 Given that $\Delta H_{comb.}$ of cyclopropane is – 4000 kJ mol⁻¹. The amount of cyclopropane that needs to be burnt in oxygen for producing 2 × 10⁵ kJ of heat is -

(A) 20 kg	(B) 2.1 kg		
(C) 21 g	(D) 210 mg		

Q.9 The latent heats of fusion in J g^{-1} of five substances a (mol. mass = 18) ; b (mol. mass = 20) ; c (mol. mass = 30), d (mol. mass = 60) and e (mol. mass = 30) are respectively 80, 45, 90,45, 45. Which of the following pair has same value of ΔH_{fusion} -

(A) a,c	(B) b <i>,</i> e
(C) d <i>,</i> e	(D) c, d

Q.10 Heats of combustion of CH_4 , C_2H_6 , C_3H_8 , C_8H_{18} in K. cals mole⁻¹ as – 210.8, – 368.4, – 526.3, – 1302.7 respectively. Decide which is a better rocket fuel -

(A) C ₈ H ₁₈	(B) CH ₄				
(C) C ₃ H ₈	(D) C ₂ H ₆				

- **Q.11** $H_2 + Cl_2 \rightarrow 2$ HCl; $\Delta H = -44$ K. cals. In this reaction heat of formation of 1 mole of HCl in K. cals is -
 - (A) 44.0 (B) + 44.0
 - (C) 22.0 (D) + 22.0
- **Q.12** The enthalpies of combustion of carbon and carbon monoxide are 390 KJ and –278 KJ respectively. The enthalpy of formation of CO in kJ is -

(A) 668 (B) 112

(A) - 40

(C) -120

- (C) 112 (D) 668
- **Q.13** According to the diagram given below, the value of ΔH for conversion of A to B is -

www.aggarwaleducare.com

- **Q.14** Heat evolved in the reaction $H_2+CI_2 \rightarrow 2HCI$ is 182 KJ. Bond energies H H =430 KJ/ mole, CI CI = 242 KJ/ mole. The H CI bond energy is-
 - (A) 763 kJ mole⁻¹ (B) 427 kJ mole⁻¹
 - (C) 336 kJ mole⁻¹ (D) 154 kJ mole⁻¹
- Q.15 The work done on the system when one mole of an ideal gas at 500 K is compressed isothermally and reversibly to 1/10th of its original volume (R = 2 cal) -
 - (A) 500 kcal (B) 1.51 kcal
 - (C) 23.03 kcal (D) 2.303 kcal
- **Q.16** For a certain reaction the change in enthalpy and change in entropy are 40.63 kJ mol⁻¹ and 100 JK⁻¹. What is the value of Δ G at 27°C and indicate whether the reaction is spontaneous or not -
 - (A) +10630 J mol⁻¹; spontaneous
 - (B) + 10630 J mol⁻¹; non spontaneous
 - (C) 7990 J mol⁻¹; spontaneous
 - (D) + 7900 J mol⁻¹; spontaneous
- Q.17 Heat of neutralisation of HF is -
 - (A) 57.32 kJ (B) > 57.32 kJ
 - (C) < 57.32 (D) None
- Q.18 The heat of neutralisation is constant when dilute solution of -
 - (A) strong acid and strong base react
 - (B) strong acid and weak base react
 - (C) strong base and weak acid react
 - (D) in all the cases
- **Q.19** For an endothermic reaction ΔS is positive. The reaction is -
 - (A) Spontaneous at all temperatures
 - (B) Spontaneous when $T\Delta S > \Delta H$
 - (C) Spontaneous when $\Delta H > T\Delta S$
 - (D) Non Spontaneous at all temperature
- Q.20 How much heat is liberated when 100 mL of 0.1 M NaOH are completely neutralised by 100 mL of 0.1 M HCl -
 - (A) 57 kJ (B) 0.57 kJ
 - (C) 5.7 kJ (D) 0.05 kJ
- Q.21 Calculate the bond energy of C-H bond from the following data :

(a) $C(s) + 2H_2(g) \rightarrow CH_4(g)$; $\Delta H = -74.8 \text{ KJ}$

- (b) $H_2(g) \rightarrow 2H(g)$; $\Delta H = 435.4 \text{ KJ}$
- (c) C(s) \rightarrow C(g); Δ H = 718.4 KJ.
- (A) 316.0 KJ/mol (B) 416 KJ/mol
- (C) 516 KJ/mol (D) 616.0 KJ/mol

www.aggarwaleducare.com

Q.22 The heat of combustion of solid benzoic acid at constant volume is – 321.30 kJ at 27°C. The heat of combustion at constant pressure is -

(A) - 321.30 - 300 R (B) - 321.30 + 300 R (C) - 321.30 - 150 R (D) - 321.30 + 900 R

Q.23 The enthalpy of the reaction

 $H_2O_2(\ell) \rightarrow H_2O(\ell) + 1/2 O_2(g)$ is

– 23.5 kcal mol⁻¹ and the enthalpy of formation of $H_2O(\ell)$ is – 68.3 kcal mol⁻¹. The enthalpy of formation of H_2O_2

(*l*) is -

(A) – 44.8 kcal mol⁻¹ (B) 44.8 kcal mol⁻¹

(C) – 91.8 kcal mol⁻¹ (D) 91.8 kcal mol⁻¹

Q.24 The heat of combustion of ethanol determined in a bomb calorimeter is -670.48 K. cals mole⁻¹ at 25^o C. What is ΔE at 25^o C for the reaction -

(A) - 335.24 K cals
 (B) - 669.28 K.cals
 (C) - 670.48 K.cals
 (D) + 670.48 K.cals

Q.25 The difference between Δ H and Δ E at constant volume is equal to -

(A) R	(B) P∆ V
(C) V∆ P	(D) 3/2 R.

- Q.26Enthalpy change of the reaction
 $2H(g) \rightarrow H_2(g)$ is 104 kcal
The H H bond dissociation energy is-
(A) 104 kcal
(C) 52 kcal(B) -104 kcal
(D) + 52 kcal
- **Q.27** If for $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g);$

 $\Delta~\mathrm{H_1}$ is enthalpy of reaction and for

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(\ell)$$

 Δ H₂ is enthalpy of reaction. Then magnitude of-

(A) $\Delta H_1 > \Delta H_2$ (B) $\Delta H_1 = \Delta H_2$

(C) $\Delta H_1 < \Delta H_2$ (D) $\Delta H_1 + \Delta H_2 = 0$.

Q.28 The heat change for the reaction

C (s) + 2S (s) \rightarrow CS₂(ℓ) is called -

- (A) Heat of transition
- (B) Heat of fusion
- (C) Heat of formation
- (D) Heat of combustion.

www.aggarwaleducare.com

Q.29 The solubility of NaCl in water at 25° C is about 6 moles per litre. Suppose you add 1 mole of NaCl to a litre of water. For the reaction, NaCl + $H_2O \rightarrow$ Salt solution -

(A) $\Delta G > 0$, $\Delta S > 0$ (B) $\Delta G < 0$, $\Delta S > 0$

- (C) $\Delta G > 0$, $\Delta S < 0$ (D) $\Delta G < 0$, $\Delta S < 0$
- $\textbf{Q.30} \qquad \text{For a reversible reaction at equilibrium, } \Delta \textbf{G} \text{ is -}$
 - (A) positive
 - (B) negative
 - (C) zero
 - (D) may be positive or negative

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	с	с	с	В	В	В	С	В	D	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	с	с	A	В	D	В	В	A	В	В
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	В	с	А	с	с	А	А	с	В	с

www.aggarwaleducare.com Reg.Office : A - 14, Ground Floor, Amrita Sadan, Sector - 22, Nerul (W), Navi Mumbai - 400706.