Daily Practice Problems

NEET CHEMISTRY

Topic: Chemical Energetics
Q. 1 A hypothetical reaction , $A \rightarrow 2 B$, proceeds through following sequence of steps -
$A \rightarrow C ; \Delta H=q_{1}$
$\mathrm{C} \rightarrow \mathrm{D} ; \Delta \mathrm{H}=\mathrm{q}_{2}$
$\frac{1}{2} \mathrm{D} \rightarrow \mathrm{B} ; \Delta \mathrm{H}=\mathrm{q}_{3}$
The heat of reaction is :
(A) $q_{1}-q_{2}+2 q_{3}$
(B) $q_{1}+q_{2}-2 q_{3}$
(C) $q_{1}+q_{2}+2 q_{3}$
(D) $q_{1}+2 q_{2}-2 q_{3}$
Q. 2 In a change from state A to state B -
(A) ' q ' depends only on the initial and final state
(B) 'w' depends only on the initial and final state
(C) $\Delta \mathrm{E}$ depends only on the initial and final state
(D) $\Delta \mathrm{E}$ depends upon the path adopted by A to change into B
Q. 3 The heat of combustion of benzene determined in a bomb calorimeter is $-870 \mathrm{~K}_{\mathrm{K}} \mathrm{cal} . \mathrm{mol}^{-1}$ at 298 K .

The value of $\Delta \mathrm{E}$ for the reaction is -
(A) $-1740 \mathrm{~K} \mathrm{} .\mathrm{cal} \mathrm{mol}^{-1}$
(B) $+870 \mathrm{~K}_{\mathrm{C}} \mathrm{cal} \mathrm{mol}^{-1}$
(C) $-870 \mathrm{~K} \mathrm{} .\mathrm{cal} \mathrm{mol}^{-1}$
(D) $+1740 \mathrm{~K} . \mathrm{cal} \mathrm{mol}^{-1}$
Q. 4 How many kcal of heat is evolved by the complete neutralisation of one mole sulphuric acid with NaOH -
(A) 13.7 kcal
(B) 27.4 kcal
(C) 6.85 kcal
(D) None of the above
Q. 5 The enthalpy of formation for $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(I)$ at $25 \div \mathrm{C}$ and 1 atm pressure by 52, -394 and $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthalpy of combustion of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$ will be -
(A) $+1412 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $-1412 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $+141.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $-141.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Q. 6 Xg of ethanal $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$ was subjected to combustion in a bomb calorimeter and the heat produced is Y joules. Then which of following is correct -
(A) $\Delta \mathrm{E}_{\text {(comb.) }}=-\mathrm{YkJ}$
(B) $\Delta \mathrm{E}_{\text {(comb.) }}=-\frac{44 \mathrm{Y}}{\mathrm{X}} \mathrm{J} \mathrm{mol}^{-1}$
(C) $\Delta \mathrm{H}_{\text {(comb.) }}=-\frac{44 \mathrm{Y}}{\mathrm{X}} \mathrm{J} \mathrm{mol}^{-1}$
(D) $\Delta \mathrm{H}_{\text {(comb.) }}=-\mathrm{Y} \mathrm{J} \mathrm{mol}^{-1}$
Q. 7 Latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is $10.00 \mathrm{kcal} / \mathrm{mol}$. What will be the change in internal energy ($\Delta \mathrm{E}$) for 3 mol of liquid at same temperature-
(A) 13.0 kcal
(B) -13.0 kcal
(C) 27.0 kcal
(D) -27.0 kcal
Q. 8 Given that $\Delta \mathrm{H}_{\text {comb. }}$ of cyclopropane is $-4000 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The amount of cyclopropane that needs to be burnt in oxygen for producing $2 \times 10^{5} \mathrm{~kJ}$ of heat is -
(A) 20 kg
(B) 2.1 kg
(C) 21 g
(D) 210 mg
Q. 9 The latent heats of fusion in J g of five substances a (mol. mass = 18) ; b (mol. mass $=20$) ; c (mol. mass $=30$), $\mathrm{d}($ mol. mass $=60)$ and $\mathrm{e}($ mol. mass $=30$) are respectively $80,45,90,45$, 45. Which of the following pair has same value of $\Delta \mathrm{H}_{\text {fusion }}{ }^{-}$
(A) a,c
(B) b,e
(C) d, e
(D) c, d
Q. 10 Heats of combustion of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{8} \mathrm{H}_{18}$ in K^{2}. cals mole ${ }^{-1}$ as $-210.8,-368.4,-526.3,-1302.7$ respectively. Decide which is a better rocket fuel -
(A) $\mathrm{C}_{8} \mathrm{H}_{18}$
(B) CH_{4}
(C) $\mathrm{C}_{3} \mathrm{H}_{8}$
(D) $\mathrm{C}_{2} \mathrm{H}_{6}$
Q. $11 \mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl} ; \Delta \mathrm{H}=-44 \mathrm{~K}$. cals. In this reaction heat of formation of 1 mole of HCl in K . cals is -
(A) -44.0
(B) +44.0
(C) -22.0
(D) +22.0
Q. 12 The enthalpies of combustion of carbon and carbon monoxide are -390 KJ and -278 KJ respectively. The enthalpy of formation of CO in kJ is -
(A) 668
(B) 112
(C) -112
(D) -668
Q. 13 According to the diagram given below, the value of ΔH for conversion of A to B is -

(A) -40
(B) +40
(C) -120
(D) +120
Q. 14 Heat evolved in the reaction $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ is 182 KJ . Bond energies $\mathrm{H}-\mathrm{H}=430 \mathrm{KJ} /$ mole, $\mathrm{Cl}-\mathrm{Cl}=242 \mathrm{KJ} /$ mole. The $\mathrm{H}-\mathrm{Cl}$ bond energy is-
(A) $763 \mathrm{~kJ} \mathrm{~mole}^{-1}$
(B) $427 \mathrm{~kJ} \mathrm{~mole}^{-1}$
(C) $336 \mathrm{~kJ} \mathrm{~mole}^{-1}$
(D) $154 \mathrm{~kJ} \mathrm{~mole}^{-1}$
Q. 15 The work done on the system when one mole of an ideal gas at 500 K is compressed isothermally and reversibly to $1 / 10$ th of its original volume ($R=2$ cal) -
(A) 500 kcal
(B) 1.51 kcal
(C) -23.03 kcal
(D) 2.303 kcal
Q. 16 For a certain reaction the change in enthalpy and change in entropy are $40.63 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{and}^{100} \mathrm{JK}^{-1}$. What is the value of $\Delta \mathrm{G}$ at $27{ }^{\circ} \mathrm{C}$ and indicate whether the reaction is spontaneous or not -
(A) $+10630 \mathrm{~J} \mathrm{~mol}^{-1}$; spontaneous
(B) $+10630 \mathrm{~J} \mathrm{~mol}^{-1}$; non spontaneous
(C) $-7990 \mathrm{~J} \mathrm{~mol}^{-1}$; spontaneous
(D) $+7900 \mathrm{~J} \mathrm{~mol}^{-1}$; spontaneous
Q. 17 Heat of neutralisation of HF is -
(A) 57.32 kJ
(B) $>57.32 \mathrm{~kJ}$
(C) <57.32
(D) None
Q. 18 The heat of neutralisation is constant when dilute solution of -
(A) strong acid and strong base react
(B) strong acid and weak base react
(C) strong base and weak acid react
(D) in all the cases
Q. 19 For an endothermic reaction $\Delta \mathrm{S}$ is positive. The reaction is -
(A) Spontaneous at all temperatures
(B) Spontaneous when $\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H}$
(C) Spontaneous when $\Delta H>T \Delta S$
(D) Non Spontaneous at all temperature
Q. 20 How much heat is liberated when 100 mL of 0.1 M NaOH are completely neutralised by 100 mL of 0.1 M HCl -
(A) -57 kJ
(B) -0.57 kJ
(C) -5.7 kJ
(D) -0.05 kJ
Q. 21 Calculate the bond energy of C-H bond from the following data :
(a) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) ; \Delta \mathrm{H}=-74.8 \mathrm{KJ}$
(b) $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g}) ; \Delta \mathrm{H}=435.4 \mathrm{KJ}$
(c) $\mathrm{C}(\mathrm{s}) \rightarrow \mathrm{C}(\mathrm{g}) ; \Delta \mathrm{H}=718.4 \mathrm{KJ}$.
(A) $316.0 \mathrm{KJ} / \mathrm{mol}$
(B) $416 \mathrm{KJ} / \mathrm{mol}$
(C) $516 \mathrm{KJ} / \mathrm{mol}$
(D) $616.0 \mathrm{KJ} / \mathrm{mol}$
Q. 22 The heat of combustion of solid benzoic acid at constant volume is -321.30 kJ at $27^{\circ} \mathrm{C}$. The heat of combustion at constant pressure is -
(A) $-321.30-300 \mathrm{R}$
(B) $-321.30+300 \mathrm{R}$
(C) $-321.30-150 \mathrm{R}$
(D) $-321.30+900 \mathrm{R}$
Q. 23 The enthalpy of the reaction
$\mathrm{H}_{2} \mathrm{O}_{2}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ is
$-23.5 \mathrm{kcal} \mathrm{mol}^{-1}$ and the enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}(\ell)$ is $-68.3 \mathrm{kcal} \mathrm{mol}^{-1}$. The enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}_{2}$
(ℓ) is -
(A) $-44.8 \mathrm{kcal} \mathrm{mol}^{-1}$
(B) $44.8 \mathrm{kcal} \mathrm{mol}^{-1}$
(C) $-91.8 \mathrm{kcal} \mathrm{mol}^{-1}$
(D) $91.8 \mathrm{kcal} \mathrm{mol}^{-1}$
Q. 24 The heat of combustion of ethanol determined in a bomb calorimeter is -670.48 K . cals mole ${ }^{-1}$ at $25^{\circ} \mathrm{C}$. What is $\Delta \mathrm{E}$ at $25^{\circ} \mathrm{C}$ for the reaction -
(A) -335.24 K cals
(B) -669.28 K.cals
(C) -670.48 K.cals
(D) +670.48 K.cals
Q. 25 The difference between $\Delta \mathrm{H}$ and $\Delta \mathrm{E}$ at constant volume is equal to -
(A) R
(B) $P \Delta V$
(C) $\mathrm{V} \Delta \mathrm{P}$
(D) $3 / 2 \mathrm{R}$.
Q. 26 Enthalpy change of the reaction
$2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})$ is - 104 kcal
The $\mathrm{H}-\mathrm{H}$ bond dissociation energy is-
(A) 104 kcal
(B) -104 kcal
(C) -52 kcal
(D) +52 kcal
Q. 27 If for $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$;
ΔH_{1} is enthalpy of reaction and for
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$
$\Delta \mathrm{H}_{2}$ is enthalpy of reaction. Then magnitude of-
(A) $\Delta H_{1}>\Delta H_{2}$
(B) $\Delta H_{1}=\Delta H_{2}$
(C) $\Delta \mathrm{H}_{1}<\Delta \mathrm{H}_{2}$
(D) $\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}=0$.
Q. 28 The heat change for the reaction
$\mathrm{C}(\mathrm{s})+2 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{CS}_{2}(\ell)$ is called -
(A) Heat of transition
(B) Heat of fusion
(C) Heat of formation
(D) Heat of combustion.
Q. 29 The solubility of NaCl in water at $25^{\circ} \mathrm{C}$ is about 6 moles per litre. Suppose you add 1 mole of NaCl to a litre of water. For the reaction, $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ Salt solution -
(A) $\Delta G>0, \Delta S>0$
(B) $\Delta G<0, \Delta S>0$
(C) $\Delta G>0, \Delta S<0$
(D) $\Delta G<0, \Delta S<0$
Q. 30 For a reversible reaction at equilibrium, $\Delta \mathrm{G}$ is -
(A) positive
(B) negative
(C) zero
(D) may be positive or negative

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	C	C	C	B	B	B	C	B	D	B
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	C	C	A	B	D	B	B	A	B	B
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	B	C	A	C	C	A	A	C	B	C

