NEET PHYSICS

Topic: Capacitance.

- The capacitance of a metallic sphere will be $1\mu F$, if its radius is nearly-Q.1
 - (1) 9 km
- (2) 10 m
- (3) 1.11 m
- (4) 1.11 cm
- Q.2 The energy of a charged conductor is given by the expression-
 - (1) $\frac{q^2}{2C}$ (2) $\frac{q^2}{C}$ (3) 2qC

- (4) $\frac{q^2}{2C^2}$
- Q.3 No current flows between two charged bodies connected together when they have the same-
 - (1) capacitance or Q/V ratio
 - (2) charge
 - (3) resistance
 - (4) potential or Q/C ratio
- **Q.4** Two spherical conductors A and B of radii R and 2R respectively are each given a charge Q. When they connected by a metallic wire. The charge will-
 - (1) flow from A to B
 - (2) flow from B to A
 - (3) remain stationary on conductor
 - (4) none of these
- The potential energy of a charged conductor of charge (q) and potential (V) is given by-**Q.5**

 - (1) $\frac{1}{2}$ qV (2) $\frac{1}{2}$ q²V
 - (3) $\frac{1}{2} \frac{q}{V}$
- (4) $\frac{1}{2}$ qV²
- **Q.6** A conductor of capacitance 0.5µF has been charged to 100 volts. It is now connected to uncharged conductor of capacitance $0.2\mu F$. The loss in potential energy is nearly -
 - $(1) 7 \times 10^{-4} J$
- $(2) 3.5 \times 10^{-4} J$
- (3) $14 \times 10^{-4} \text{ J}$ (4) $7 \times 10^{-3} \text{ J}$

Q.7	The two are connected resulting in redistribution of charges. Then the final potential is -									
	(1) 300 v		_	(2) 500 volt						
	(3) 425 v			(4) 400 volt						
Q.8	•	•	·	i and possessing equompared to each inc	ual charges combine to lividual drop is-	o form a big spher	ical drop. Then the			
	(1) N tim	es		(2) N ^{2/3} times						
	(3) N ^{1/3} t	imes		(4) N ^{5/3} times						
Q.9	The capacity of a parallel plate condenser is C. Its capacity when the separation between the plates is halved will be-									
	(1) 4C	(2) 2C	(3) C/2	(4) C/4						
Q.10	A parallel plate condenser has a capacitance $50\mu F$ in air and $110~\mu F$, when immersed in an oil. The dielect constant K of the oil is-									
	(1) 0.45	(2) 0.55	(3) 1.10	(4) 2.20						
Q.11	•				n glass plate is placed value of dielectric co	·	es of the conductor			
	(1) 1.6	(2) 5	(3) 8	(4) 40						
0.12	If the p.d	l. across the	e ends of a ca	npacitor 4uF is 1.0 ki	lovolt. Then its electric	cal potential energ	gv will be-			
-	$(1) 4 \times 10^{-1}$		(2) 2 erg		A. V.		,,			
	(3) 2 joule		(4) 4 joule							
	(3) 2 jour		(1) Tjoure							
Q.10 Q.11 Q.12	A 6μF capacitor charged from 10 volts to 20 volts. Increase in energy will be -									
	(1) 18 × 1	10 ⁻⁴ J	(2) 9 × 10 ⁻²	1 J						
	(3) 4.5 ×	10 ⁻⁴ J	$(4) 9 \times 10^{-9}$	9 J						
Q.14	The energy of a charged capacitor resides in -									
	(1) the electric field only									
	(2) the magnetic field only									
	(3) both the electric and magnetic field									
	(4) neither in electric nor magnetic field									

- The capacity and the energy stored in a parallel plate condenser with air between its plates are respectively C₀ Q.15 and W_0 . If the air is replaced by glass (dielectric constant = 5) between the plates, the capacity of the plates and the energy stored in it will respectively be -

 - (1) $5C_0$, $5W_0$ (2) $5C_0$, $\frac{W_0}{5}$

 - (3) $\frac{C_0}{5}$, $5W_0$ (4) $\frac{C_0}{5}$, $\frac{W_0}{5}$
- Q.16 By inserting a plate of dielectric material between the plates of a parallel plate capacitor, the energy is increased five times. The dielectric constant of the material is -
 - (1) 1/25 (2) 1/5
- (3)5
- (4)25
- Q.17 A capacitor of capacity C has charge Q and stored energy is W. If the charge is increased to 2Q the stored energy will be -
 - (1) 2W
- (2) W/2 (3) 4W
- (4) W/4
- Q.18 A glass slab is put with in the plates of a charged parallel plate condenser. Which of the following quantities does not change?
 - (1) energy of the condenser
 - (2) capacity
 - (3) intensity of electric field
 - (4) charge
- Q.19 A parallel plate capacitor is connected to a battery and inserted a dielectric plate between the place of plates then which quantity increase-
 - (1) potential difference
 - (2) electric field
 - (3) stored energy
 - (4) E. M. F of battery
- A parallel plate capacitor is connected to a battery and decreased the distance between the plates then which Q.20 quantity is same on the parallel plate capacitor-
 - (1) potential difference
 - (2) capacitance
 - (3) intensity of electric field
 - (4) stored energy

- A parallel plate capacitor is charged by a battery after charging the capacitor, battery is disconnected. And if a Q.21 dielectric plate is inserted between the place of plates. Then which one of the following statements is not correct-
 - (1) increase in the stored energy
 - (2) decrease in the potential difference
 - (3) decrease in the electric field
 - (4) increase in the capacitance
- A parallel plate capacitor has a capacity C. The separation between plates is doubled and Q.22 a dielectric medium is inserted between plates. The new capacity is 3C. The dielectric constant of medium is-
 - (1) 1.5
- (2) 3.0
- (3) 6.0
- (4) 12.0
- Q.23 A parallel plate capacitor is charged by a battery after charging the capacitor, battery is disconnected and decrease the distance between the plates then which following statement is correct?
 - (1) electric field is not constant
 - (2) potential difference is increased
 - (3) decrease the capacitance
 - (4) decrease the stored energy
- Q.24 The capacitance of a parallel plate condenser does not depend upon-
 - (1) the distance between the plates
 - (2) area of the plates
 - (3) medium between the plates
 - (4) metal of the plates
- A metallic plate of thickness (t) and face area of one side (A) is inserted between the plates of a parallel plate Q.25 air capacitor with a separation (d) and face are (A). Then the equivalent capacitance is -
 - $(1) \frac{\in_0 A}{d}$
- $(2) \frac{\in_0 A}{(d \times t)}$
- (3) $\frac{\epsilon_0}{(d-t)}$ (4) $\frac{\epsilon_0}{(d+t)}$
- Q.26 An air capacitor of 1µµF is immersed in a transformer oil of dielectric constant 3. The capacitance of the oil capacitor is-
 - $(1) 1\mu\mu F$
- (2) $\frac{1}{3} \mu \mu F$
- (3) 3µµF
- (4) $2\mu\mu F$
- Q.27 Two metal plates form a parallel plate condenser. The distance between the plates in d. Now a metal plate of thickness d/2 and of same area is inserted completely between the plates, the capacitance -
 - (1) remains unchanged
 - (2) is doubled
 - (3) is halved
 - (4) reduced to one fourth

- Q.28 The capacity of a parallel plate capacitor with air as medium is $2\mu F$. After inserting a sheet of mica a equal air thickness, it becomes $5\mu F$. The dielectric constant of mica is -
 - (1) 0.1 (2) 0.4 (3) 2.5 (4) 10
- Q.29 A parallel plate capacitor has rectangular plates of 400 cm² and are separated by a distance of 2 mm with air as medium. What charge will appear on the plates. If a 200 volt potential difference is applied across the condenser?
 - (1)3.54 \times 10⁻⁶ C (2) 3.54 \times 10⁻⁸ C
 - (3) 3.54×10^{-10} C (4) 1770.8×10^{-13} C
- Q.30 A parallel plate condenser is immersed in an oil of dielectric constant 2. The field between the plates is-
 - (1) increased proportional to 2.
 - (2) decreased proportional to 1/2
 - (3) increased proportional to $\sqrt{2}$
 - (4) decreased proportional to $1/\sqrt{2}$

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	1	4	1	1	1	3	3	2	4
Oue	11	12	12	14	15	16	17	18	19	20
Que.	11	12	13	14	15	10	17	10	19	20
Ans.	3	3	2	1	2	2	3	4	3	1
Que.	21	22	23	24	25	26	27	28	29	30
16			Carr							
Ans.	1	3	4	4	3	3	2	3	2	2