## Daily Practice Problems

## JEE CHEMISTRY

## Topic: Radio Activity

Q. 1 Radioactivity is a -
(1) nuclear process
(2) atomic process
(3) chemical process
(4) physical process
Q. 2 The value of decay constant of last element of radioactive series is -
(1) infinite
(2) much less
(3) zero
(4) equal to the decay constant of first element
Q. 3 If the pressure on a radioactive material is increased three times, then the mean life of the element -
(1) does not change
(2) will become three times
(3) will becomes $\frac{1}{3} \mathrm{rd}$
(4) will depend on the initial pressure
Q. 4 A radioactive material emits $20 \beta$-particles per sec at $10^{\circ} \mathrm{C}$. If the temperature is increased to $20^{\circ} \mathrm{C}$ then the emission rate of $\beta$-particles per sec is -
(1) 20
(2) 40
(3) 30
(4) 1
Q. 5 What will be the effect of dissolving a radioactive material in $\mathrm{HNO}_{3}$ ?
(1) Its radioactive properties will remain unchanged
(2) Its radioactive properties will change
(3) The state of material cannot be predicted
(4) None of these
Q. 6 The particles emitted by a radioactive substance are deflected in a magnetic field. The particle may be-
(1) neutrons
(2) electrons
(3) protons
(4) hydrogen atoms
Q. 7 What will happen when a radioactive substance with mean life $2 \times 10^{5}$ years is dissolved in $\mathrm{H}_{2} \mathrm{SO}_{2}$ ?
(1) it will dissociate into $\mathrm{H}^{+}$and $\mathrm{SO}_{2}$ ions
(2) it will be converted into $\mathrm{SO}_{2}$ gas
(3) it will be converted into $\mathrm{H}_{2}$ gas
(4) it will remain unchanged
Q. 8 The half life of a radioactive material is 20 days. If it is heated to 10000 K , then its half life will become-
(1) $20 \times 10000$ days
(2) $20 / 10000$ days
(3) 9800 days
(4) 20 days
Q. 9 The following is not an application of radioactive material -
(1) to locate cracks in welding or castings
(2) to find the thickness of material
(3) in cigarette factory
(4) in photography
Q. 10 SI unit of radioactivity is -
(1) curie
(2) rutherfored
(3) rontgen
(4) bacqueral
Q. 11 The graph between remaining radioactive atoms and time for a radioactive decay is -
(1) straight line
(2) parabola
(3) exponential
(4) ellipse
Q. 12 Number of active atoms in $m$ gram material is :
( $\mathrm{M} \rightarrow$ atomic weight)
(1) $\mathrm{Mm} \times 6.02 \times 10^{23}$
(2) $(M / m) \times 6.02 \times 10^{23}$
(3) $6.02 \times 10^{23} / \mathrm{Mm}$
(4) $(\mathrm{m} / \mathrm{M}) \times 6.02 \times 10^{23}$
Q. 13 The activity of a radioactive element (decay constant $\lambda$ ) becomes $\frac{1}{3}$ of initial activity $A_{0}$ in 9 years then the decay constant after 9 years will -
(1) $\lambda$
(2) $\lambda / 3$
(3) $\lambda / 9$
(4) $2 \lambda / 3$
Q. 14 A radioactive sample contains two elements $P$ and $Q$. The mass of each is $10^{-3} \mathrm{~kg}$. The ratio of their atomic weights is $1: 3$. Their half lives are 4 s and 8 s respectively. The mass of $P$ and $Q$ after 16 s will respectively be -
(1) $1.25 \times 10^{-5} \mathrm{~kg}$ and $2.5 \times 10^{-4} \mathrm{~kg}$
(2) $6.25 \times 10^{-5} \mathrm{~kg}$ and $2.5 \times 10^{-4} \mathrm{~kg}$
(3) $6.25 \times 10^{-5} \mathrm{~kg}$ and $1.25 \times 10^{-4} \mathrm{~kg}$
(4) $2.25 \times 10^{-5} \mathrm{~kg}$ and $6.25 \times 10^{-4} \mathrm{~kg}$
Q. 15 A fraction of $\frac{5}{9}$ of a radioactive substance decays in time $t$. What fraction of the substance would had been active after time $\frac{t}{2}$ -
(1) $1 / 2$
(2) $2 / 3$
(3) $3 / 4$
(4) $4 / 5$
Q. 16 What percentage of the atoms in a sample will remain undecayed in a time equal to mean life ?
(1) $100 \%$
(2) $63 \%$
(3) $50 \%$
(4) $37 \%$
Q. 17 If the quantity of radioactive material reduces by $10 \%$ in 5 days, then the quantity that remains after 20 days will be -
(1) $70 \%$
(2) $75 \%$
(3) $65 \%$
(4) $60 \%$
Q. 18 The half life of a radioactive substance is 23.10 minute. If $10^{23}$ atoms of the substance are active at any instant of time, then the activity of the substance will be - (in dps)
(1) $1 \times 10^{19}$
(2) $3 \times 10^{19}$
(3) $5 \times 10^{19}$
(4) $7 \times 10^{19}$
Q. 19 We get $N_{1}$ and $N_{2} \beta$-particles per second from two specimens of a radioactive specimen, then the ratio of number of atoms present in the samples is -
(1) $N_{2} / N_{1}$
(2) $N_{1} / N_{2}$
(3) $N_{1}{ }^{2} / N_{2}{ }^{2}$
(4) None of these
Q. 20 A radio active substance has $t_{1 / 2}=60 \mathrm{~min}$. After 3 hrs , what percentage of radioactivity will remain -
(1) $50 \%$
(2) $17.5 \%$
(3) $12.5 \%$
(4) $25 \%$
Q. 21 When 64 gms of a radioactive element are carried from Jaipur to Jodhpur in 2 hours, then 1 gm of active element remains. The half life of the element is -
(1) 2 hours
(2) 30 minute
(3) 20 minute
(4) 1 hour
Q. 22 The number of active atoms of a radio active element decreases from 1024 to 128 in 6 hours. The half life of the element is -
(1) 6 hours
(2) 4 hours
(3) 3 hours
(4) 2 hours
Q. 23 The weight based ratio of $U^{238}$ and $\mathrm{Pb}^{226}$ in a sample of rock is 4 : 3 . If the half life of $U^{238}$ is $4.5 \times$ $10^{9}$ years, then the age of rock is -
(1) $9.0 \times 10^{9}$ years
(2) $6.3 \times 10^{9}$ years
(3) $4.5 \times 10^{9}$ years
(4) $3.78 \times 10^{9}$ years
Q. 24 The rate of decay of radioactive element at a given instant of time is $10^{3}$ disintegration per second. If the half life of this element is 1 second, then the rate of decay after 3 second will be -
(1) 12 per sec
(2) 50 per sec
(3) 500 per sec
(4) 125 per sec
Q. 25 A radioactive isotope $X$ with a half-life of $1.37 \times 10^{9}$ years decays to $Y$ which is stable. A sample of rock from the moon was found to contain both the elements $X$ and $Y$ which were in the ratio 1:7. The age of the rocks is -
(1) $1.96 \times 10^{8}$ years
(2) $3.85 \times 10^{9}$ years
(3) $4.11 \times 10^{9}$ years
(4) $9.59 \times 10^{9}$ years
Q. 26 Two radioactive substance $X$ and $Y$ initially contain equal number of nuclei. $X$ has a half life of 1 hours and $Y$ has half of 2 hours. After two hours $t$ he ratio of the activity of $X$ to the activity of $Y$ is -
(1) $1: 4$
(2) $1: 2$
(3) $1: 1$
(4) $2: 1$
Q. 27 The radioactivity of a sample is $R_{1}$ at a time $T_{1}$ and $R_{2}$ at a time $T_{2}$ If the half-life of the specimen is $T$, the number of atoms that have disintegrated in the time $\left(T_{2}-T_{1}\right)$ is proportional to -
(1) $\left(R_{1} T_{1}-R_{2} T_{2}\right)$
(2) $\left(R_{1}-R_{2}\right)$
(3) $\left(R_{1}-R_{2}\right) T$
(4) $\left(R_{2}-R_{1}\right) / T$
Q. 28 The counting rate observed from radioactivity source at $t=0$ second was 1600 counts per second and at $t=8$ seconds it was 100 counts per second. The counting rate observed, as counts per second at $t=6$ seconds will be -
(1) 400
(2) 300
(3) 200
(4) 150
Q. 29 A radioactive sample at any instant has its disintegration rate 5000 disintegrations per minute. After 5 minutes, the rate is 1250 disintegrations per minute. Then, the decay constant (per minute) is -
(1) $0.8 \ln 2$
(2) $0.4 \ln 2$
(3) $0.2 \ln 2$
(4) $0.1 \ln 2$
Q. 30 The fraction of a radioactive material which remains active after time $t$ is $9 / 16$. The fraction which remains active after time $\mathrm{t} / 2$ will be -
(1) $4 / 5$
(2) $7 / 8$
(3) $3 / 5$
(4) $3 / 4$

## ANSWER KEY

| Que. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ans. | 1 | 3 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 4 |
| Que. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Ans. | 3 | 4 | 1 | 2 | 2 | 4 | 3 | 3 | 2 | 3 |
| Que. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Ans. | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 4 |

