

Daily Pratice Problems

JEE CHEMISTRY

Topic- Chemical Kinetic

Q.1	Under a given set of experimental conditions, with increase in the concentration of the reactants the rate of a chemical reaction-						
	[1] Decreases	[2] Increases					
	[3] Remains unaltered	[4] First decreases and then increases.					
Q.2	The rate at which a substance reacts depends of	on its-					
	[1] Atomic weight [2] Equivalent weight	[3] Molecular weight [4] Active Mass					
Q.3	In a reaction involving the synthesis of ammonia	a by Haber's process,					
	$I_2 + 3H_2 \rightleftharpoons 2NH_3$, the rate of reaction was measured as = 2.5×10^{-4} mol L ⁻¹ s ⁻¹ . The rate of change of I_2 will be 1] 1.25 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹ [2] 2.50 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹						
	[1] 1.25 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹	[2] 2.50 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹					
	[3] 7.5 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹	[4] 5.0 × 10 ⁻⁴ mol L ⁻¹ S ⁻¹					
Q.4	In the formation of sulphur trioxide by contact process, $2SO_2 + O_2 \rightleftharpoons 2SO_3$, the rate of reaction was measure						
	as $\frac{-d[O_2]}{dt} = 2.5 \times 10^{-4} \text{ mol lit}^{-1} \text{ sec}^{-1}$. the rate of	reaction expressed in terms of SO ₃ will be-					
	[1] –1.25 × 10 ⁻⁴ mol L ⁻² sec ⁻¹	[2] 50 × 10 ⁻⁴ mol L ⁻¹ sec ⁻¹					
	[3] -3.75 × 10 ⁻⁴ mol L ⁻¹ sec ⁻¹	[4] 5.00 × 10 ⁻⁴ mol L ⁻¹ sec ⁻¹					
Q.5	The rate constant of a reaction is equal to rate of reaction-						
	[1] When concentrations of reactants do not change with time						
	[2] When concentrations of all reactants and pro	oducts are equal					
	[3] At time, t = 0[4] When concentrations of all reactants are unity						
Q.6	Which of the following is an unimolecular reaction	on?					
	[1] $2HI \rightarrow H_2 + I_2$ [2] $N_2O_5 \rightarrow N_2O_4 + \frac{1}{2}O_2$	$[3] H_2 + CI_2 \rightarrow 2HCI \qquad [4] PCI_3 + CI_2 \rightarrow PCI_5$					

Q.7							
	[1] Increases		[2] Decreases				
	[3] Remains unaffected		[4] Sometimes increases and sometimes decreases				
Q.8	Which of the following is a first order reaction-						
	$[1] \operatorname{NH}_4\operatorname{NO}_2 \to \operatorname{N}_2 + 2\operatorname{H}_2$	20	$[2] 2HI = H_2 + I_2$				
	$[3] 2NO_2 \rightarrow 2NO + O_2$		$[4] 2NO + O_2 \rightarrow 2NO_2$				
Q.9	The hydrolysis of ethyl	acetate is a reaction of - 0	$H_3COOEt + H_2O \longrightarrow CH_3COOH + EtOH$				
	[1] First order	[2] Third order	[3] Second order	[4] Zero order			
Q.10	For a chemical reaction disappearance of X will	For a chemical reaction 2X + Y \rightarrow Z, the rate of appearance of Z is 0.05 mol L ⁻¹ per min. The rate disappearance of X will be :					
	[1] 0.05 mol L ⁻¹ per hou	ır [2] 0.05 mol L ^{−1} per min	1 [3] 0.1 mol L ⁻¹ min ⁻¹	[4] 0.25 mol L ⁻¹ per min			
Q.11	For the reaction $N_2 + 3$	$H_2 \rightleftharpoons 2NH_3$					
the rate of change of concentration for hydrogen is – 0.3×10^{-4} Ms ⁻¹ . The rate of change of conc ammonia is :							
	[1] – 0.2 × 10 ⁻⁴	[2] 0.2 × 10 ⁻⁴	[3] 0.1 × 10 ⁻⁴	[4] 0.3 × 10 ⁻⁴			
Q.12	The unit of rate constar	nt for a zero order reactior	n is-				
	[1] Litre sec ⁻¹	[2] Lit mole ⁻¹ sec ⁻¹	[3] Mol lit ⁻¹ sec ⁻¹	[4] Mol sec ⁻¹			
Q.13	A zero order reaction is	one whose rate is indepe	endent of-				
	[1] The temperature of t[3] Proasence of cataly	the reaction est	[2] The concentration of the reactants [4] None of these				
Q.14	A reaction is represented	ed by-					
	A $\underline{\kappa_1}$ B (slow) and A + B $\underline{\kappa_2}$ C (fast) where K_1 and K_2 and the rate constants of the mechanistic steps.						
	The rate of production of	of C will be given by-					
	[1] K ₁ [A] [B]	[2] K ₁ [A]	[3] K ₁ K ₂ [A]	[4] K ₂ [A] [B]			
Q.15	The rate law for the reaction : 2 C + D \rightarrow A + E is $-\frac{d[D]}{dt} = k[C]^2[D]$						
	If C is present in large excess, the order of the reaction will be-						
	[1] Zero	[2] First	[3] Second	[4] Third			
Q.16	16 The rate of reaction between A and B increase by a factor of 100, when the concentration of A is folds. The order of reaction with respect to A is-						

[1] 10 [2] 1 [3] 4 [4] 2

Q.17	The half-life of a first c	order reaction $\left[K = \frac{2.303}{t} \right]$	$\log \left(\frac{a}{a-x}\right)] \text{ is-}$				
	[1] Directly proportion	al to 'a'	[2] Inversely proportion	al to 'a'			
	[3] Independent of 'a'		[4] Proportional to (a-x)				
Q.18	8 Which of the following statement is not correct for the reaction- $4A + B \implies 2C + 2D$						
	[1] The rate of disappearance of B is one forth rate of disappearance of A						
	[2] The rate of appearance of C is one half the rate of disappearance of B						
	[3] The rate of formation of D is one half the rate of consumption of A						
	[4] The rates of formation of C and D are equal.						
Q.19	The temperature coef	ficient of most of the reacti	ons lies between-				
	[1] 1 and 3	[2] 2 and 3	[3] 2 and 4	[4] 1 and 4			
Q.20	True statement is-						
	[1] Positive catalyst increases the rate of a reaction						
	[2] During the course of the reaction, specific reaction rate remains constant.						
	[3] Rate constant always increases with rise in temperature whether the reaction is endothermic or exothermic						
	[4] All are correct						
Q.21	The effect of tempera	ture on the rate constant o	f a reaction is given by-				
	[1] Arrehenius Equation	n	[2] Nernst Equation				
	[3] vant's Hoff Equatio	n	[4] Gibb's Helmholtz Equation				
Q.22	In a certain reaction 10% of the reactant decomposes in one hour,20% in two hours, 30% in three hours a						
	[1] Hour-1	[2] Mol litro-1bour-1		[4] Mol 200-1			
Q.23	In a reaction, the three	shold energy is equal to-					
	[1] Activation energy		[2] Activation energy -	normal energy of reactants			
	[3] Activation energy + normal energy of reactants [4] Normal energy of reactants						

Q.24 The decomposition of H_2O_2 can be followed by titration with KMnO₄ and is found to be a first order reaction. The rate constant is 4.5×10^{-2} . In an experiment, the initial titre value was 25 ml. The titre value will be 5 ml after a lapse of-

[1] $4.5 \times 10^{-2} \times 5$ minutes [2] $\frac{\log_e 5}{4.5 \times 10^{-2}}$ minutes [3] $\frac{\log_e 5/4}{4.5 \times 10^{-2}}$ [4] None of the above

Q.25 The half-life of decomposition of N_2O_5 is a first order reaction represented by-

 $N_2O_5 \rightarrow N_2O_4 + 1/2O_2$

After 15 minutes the volume of O_2 produced is 9 ml and at the end of the reaction 35 ml. The rate constant is equal to-

[1]
$$\frac{1}{15}\log_{e}\frac{35}{26}$$
 [2] $\frac{1}{15}\log_{e}\frac{44}{26}$ [3] $\frac{1}{15}\log_{e}\frac{35}{36}$ [4] None of the foregoing

Q.26 The rate constant of a reaction is 1.5 × 10⁻³ at 25°C and 2.1×10⁻² at 60°C. The activation energy is-

[1]
$$\frac{35}{333} \operatorname{Rlog}_{e} \frac{2.1 \times 10^{-2}}{1.5 \times 10^{-2}}$$
 [2] $\frac{298 \times 333}{35} \operatorname{Rlog}_{e} \frac{21}{1.5}$

[3]
$$\frac{298 \times 333}{35} \operatorname{Rlog}_{e} 2.1$$
 [4] $\frac{298 \times 333}{35} \operatorname{Rlog}_{e} \frac{2.1}{1.5}$

Q.27 The rate constant (k) for the reaction $2X + Y \rightarrow Products$, was found to be $3.58 \times 10^{-4} L$ mole⁻¹ s⁻¹ after 15 seconds, $3.6 \times 10^{-4} L$ mole⁻¹ s⁻¹ after 30 seconds and $3.56 \times 10^{-4} L$ mole⁻¹ s⁻¹ after 50 seconds. Hence the order of the reaction is-

- **Q.28** 75% of a first order reaction was completed in 32 minutes. When was 50% of the reaction completed.
 - [1] 24 minutes [2] 8 minutes [3] 16 minutes [4] 4 minutes
- **Q.29** If the concentration of the reactants in the reaction $2A + B \rightarrow C + D$ is increased by three folds, the rate of the reaction will be increased by-

[1] 27 times	[2] 9 times	[3] 64 times	[4] 01 times

Q.30 The incorrect statement is-

- [1] All the collisions between reactant molecules do not lead to a chemical change
- [2] A zero order reaction proceeds at a constant rate independent of concentration or time
- [3] Fast reactions have low activation energies

[4] In a first order reaction, the reaction ideally takes finite time to be completed

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	4	3	4	4	2	3	1	1	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	2	2	2	4	3	2	2	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	3	2	1	4	1	3	1	4