JEE CHEMISTRY

Topic- Chemical Kinetic

Q. 1 Under a given set of experimental conditions, with increase in the concentration of the reactants the rate of a chemical reaction-
[1] Decreases
[3] Remains unaltered
[2] Increases
[4] First decreases and then increases.
Q. 2 The rate at which a substance reacts depends on its-
[1] Atomic weight
[2] Equivalent weight
[3] Molecular weight
[4] Active Mass
Q. 3 In a reaction involving the synthesis of ammonia by Haber's process,
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$, the rate of reaction was measured as $=2.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. The rate of change of conc. of H_{2} will be
[1] $1.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$
[2] $2.50 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$
[3] $7.5 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$
[4] $5.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$
Q. 4 In the formation of sulphur trioxide by contact process, $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}$, the rate of reaction was measured as $\frac{-\mathrm{d}\left[\mathrm{O}_{2}\right]}{\mathrm{dt}}=2.5 \times 10^{-4} \mathrm{~mol} \mathrm{lit}^{-1} \mathrm{sec}^{-1}$. the rate of reaction expressed in terms of SO_{3} will be-
[1] $-1.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-2} \mathrm{sec}^{-1}$
[2] $50 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$
[3] $-3.75 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$
[4] $5.00 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{sec}^{-1}$
Q. 5 The rate constant of a reaction is equal to rate of reaction-
[1] When concentrations of reactants do not change with time
[2] When concentrations of all reactants and products are equal
[3] At time, $\mathrm{t}=0$
[4] When concentrations of all reactants are unity
Q. 6 Which of the following is an unimolecular reaction?
[1] $2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$
[2] $\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2}$
[3] $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$
$[4] \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5}$
Q. 7 If the surface area of the reactant is increased then the order of reaction :
[1] Increases
[2] Decreases
[3] Remains unaffected
[4] Sometimes increases and sometimes decreases
Q. 8 Which of the following is a first order reaction-
[1] $\mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
[2] $2 \mathrm{HI}=\mathrm{H}_{2}+\mathrm{I}_{2}$
[3] $2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$
[4] $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
Q. 9 The hydrolysis of ethyl acetate is a reaction of $-\mathrm{CH}_{3} \mathrm{COOEt}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{EtOH}$
[1] First order
[2] Third order
[3] Second order
[4] Zero order
Q. 10 For a chemical reaction $2 X+Y \rightarrow Z$, the rate of appearance of Z is $0.05 \mathrm{~mol} \mathrm{~L}^{-1}$ per min. The rate of disappearance of X will be :
[1] $0.05 \mathrm{~mol} \mathrm{~L}^{-1}$ per hour [2] $0.05 \mathrm{~mol} \mathrm{~L}^{-1}$ per min [3] $0.1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
[4] $0.25 \mathrm{~mol} \mathrm{~L}^{-1}$ per min
Q. 11 For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
the rate of change of concentration for hydrogen is $-0.3 \times 10^{-4} \mathrm{Ms}^{-1}$. The rate of change of concentration of ammonia is :
[1] -0.2×10^{-4}
[2] 0.2×10^{-4}
[3] 0.1×10^{-4}
[4] 0.3×10^{-4}
Q. 12 The unit of rate constant for a zero order reaction is-
[1] Litre sec^{-1}
[2] Lit $\mathrm{mole}^{-1} \mathrm{sec}^{-1}$
[3] $\mathrm{Mol} \mathrm{lit}^{-1} \mathrm{sec}^{-1}$
[4] Mol sec- ${ }^{-1}$
Q. 13 A zero order reaction is one whose rate is independent of-
[1] The temperature of the reaction
[2] The concentration of the reactants
[3] Proasence of catalyst
[4] None of these
Q. 14 A reaction is represented by-
$A \xrightarrow{\mathrm{~K}_{1}} \mathrm{~B}$ (slow) and $\mathrm{A}+\mathrm{B} \xrightarrow{\mathrm{K}_{2}} \mathrm{C}$ (fast) where K_{1} and K_{2} and the rate constants of the mechanistic steps. The rate of production of C will be given by-
[1] $\mathrm{K}_{1}[\mathrm{~A}][\mathrm{B}]$
[2] $\mathrm{K}_{1}[\mathrm{~A}]$
[3] $\mathrm{K}_{1} \mathrm{~K}_{2}$ [A]
[4] $\mathrm{K}_{2}[\mathrm{~A}][\mathrm{B}]$
Q. 15 The rate law for the reaction : $2 C+D \rightarrow A+E$ is $-\frac{d[D]}{d t}=k[C]^{2}[D]$

If C is present in large excess, the order of the reaction will be-
[1] Zero
[2] First
[3] Second
[4] Third
Q. 16 The rate of reaction between A and B increase by a factor of 100 , when the concentration of A is increased 10 folds. The order of reaction with respect to A is-
[1] 10
[2] 1
[3] 4
[4] 2
Q. 17 The half-life of a first order reaction $\left[K=\frac{2.303}{t} \log \left(\frac{a}{a-x}\right)\right]$ is-
[1] Directly proportional to 'a'
[2] Inversely proportional to ' a '
[3] Independent of 'a'
[4] Proportional to (a-x)
Q. 18 Which of the following statement is not correct for the reaction- $4 A+B \rightleftharpoons 2 C+2 D$
[1] The rate of disappearance of B is one forth rate of disappearance of A
[2] The rate of appearance of C is one half the rate of disappearance of B
[3] The rate of formation of D is one half the rate of consumption of A
[4] The rates of formation of C and D are equal.
Q. 19 The temperature coefficient of most of the reactions lies between-
[1] 1 and 3
[2] 2 and 3
[3] 2 and 4
[4] 1 and 4
Q. 20 True statement is-
[1] Positive catalyst increases the rate of a reaction
[2] During the course of the reaction, specific reaction rate remains constant.
[3] Rate constant always increases with rise in temperature whether the reaction is endothermic or exothermic
[4] All are correct
Q. 21 The effect of temperature on the rate constant of a reaction is given by-
[1] Arrehenius Equation
[2] Nernst Equation
[3] vant's Hoff Equation
[4] Gibb's Helmholtz Equation
Q. 22 In a certain reaction 10\% of the reactant decomposes in one hour,20\% in two hours, 30% in three hours and so on. Dimension of the velocity constant (rate constant) are-
[1] Hour ${ }^{-1}$
[2] Mol litre ${ }^{-1}$ hour ${ }^{-1}$
[3] Litre $\mathrm{mol}^{-1} \mathrm{sec}^{-1}$
[4] Mol sec- ${ }^{-1}$
Q. 23 In a reaction, the threshold energy is equal to-
[1] Activation energy
[2] Activation energy - normal energy of reactants
[3] Activation energy + normal energy of reactants [4] Normal energy of reactants
Q. 24 The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ can be followed by titration with KMnO_{4} and is found to be a first order reaction. The rate constant is 4.5×10^{-2}. In an experiment, the initial titre value was 25 ml . The titre value will be 5 ml after a lapse of-
[1] $4.5 \times 10^{-2} \times 5$ minutes [2] $\frac{\log _{\mathrm{e}} 5}{4.5 \times 10^{-2}}$ minutes
[3] $\frac{\log _{e} 5 / 4}{4.5 \times 10^{-2}}$
[4] None of the above
Q. 25 The half-life of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is a first order reaction represented by-
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2}$
After 15 minutes the volume of O_{2} produced is 9 ml and at the end of the reaction 35 ml . The rate constant is equal to-
[1] $\frac{1}{15} \log _{e} \frac{35}{26}$
[2] $\frac{1}{15} \log _{e} \frac{44}{26}$
[3] $\frac{1}{15} \log _{e} \frac{35}{36}$
[4] None of the foregoing
Q. 26 The rate constant of a reaction is 1.5×10^{-3} at $25^{\circ} \mathrm{C}$ and 2.1×10^{-2} at $60^{\circ} \mathrm{C}$. The activation energy is-
[1] $\frac{35}{333} R \log _{e} \frac{2.1 \times 10^{-2}}{1.5 \times 10^{-2}}$
[2] $\frac{298 \times 333}{35} R \log _{e} \frac{21}{1.5}$
[3] $\frac{298 \times 333}{35} \mathrm{Rlog}_{\mathrm{e}} 2.1$
[4] $\frac{298 \times 333}{35} R \log _{e} \frac{2.1}{1.5}$
Q. 27 The rate constant (k) for the reaction $2 X+Y \rightarrow$ Products, was found to be $3.58 \times 10^{-4} \mathrm{~L} \mathrm{~mole}^{-1} \mathrm{~s}^{-1}$ after 15 seconds, $3.6 \times 10^{-4} \mathrm{~L} \mathrm{~mole}^{-1} \mathrm{~s}^{-1}$ after 30 seconds and $3.56 \times 10^{-4} \mathrm{~L} \mathrm{~mole}^{-1} \mathrm{~s}^{-1}$ after 50 seconds. Hence the order of the reaction is-
[1]Two
[2] Three
[3] Zero
[4] One
Q. 2875% of a first order reaction was completed in 32 minutes. When was 50% of the reaction completed.
[1] 24 minutes
[2] 8 minutes
[3] 16 minutes
[4] 4 minutes
Q. 29 If the concentration of the reactants in the reaction $2 A+B \rightarrow C+D$ is increased by three folds, the rate of the reaction will be increased by-
[1] 27 times
[2] 9 times
[3] 64 times
[4] 01 times
Q. 30 The incorrect statement is-
[1] All the collisions between reactant molecules do not lead to a chemical change
[2] A zero order reaction proceeds at a constant rate independent of concentration or time
[3] Fast reactions have low activation energies
[4] In a first order reaction, the reaction ideally takes finite time to be completed

Answer Key

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	4	3	4	4	2	3	1	1	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	2	2	2	4	3	2	2	4
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	3	2	1	4	1	3	1	4

